
A Machine Learning-based Approach to Live Migration Modeling

Changyeon Jo, Changmin Ahn, and Bernhard Egger
Department of Computer Science and Engineering

Seoul National University
Seoul, Korea

Email: {changyeon,changmin,bernhard}@csap.snu.ac.kr

Abstract—Live migration is one of the core technologies to
increase the efficiency of data centers by enabling better power
savings, a higher utilization, load balancing, and simplifying
maintenance. With service-level agreements (SLA) in place, the
overhead of live migration in terms of resources consumed on
the host plus the performance reduction and downtime of the
migrated VM poses a major obstacle to effectively apply live
migration. With various live migration algorithms available, an
important question is then which of the algorithms can provide
optimal performance while respecting the SLAs. In this work,
we propose a versatile model that is able to accurately predict
the key metrics of live migration. The machine-learned model
is trained with data from over 10,000 VM migrations and
evaluated for the five live migration algorithms available in the
latest QEMU/KVM virtualization environment. The evaluation
shows that the proposed model is able to predict the total
migration time and the total transferred data with over 90%
accuracy, and 90th percentile error of the downtime is 280ms.

1. Introduction

Virtualization allows data center operators to better uti-
lize their resources by running multiple virtual machines on
one physical host. In order to adapt to fluctuating workloads
in virtual machines and optimize the utilization of hard-
ware resources, virtual machines can be live migrated [3],
i.e., moved from one physical host to another while the
virtual machine (VM) keeps running. To balance the load
between servers, VMs running on over-committed hosts can
be migrated to idle servers. On the other hand, the VMs
of a lightly-loaded server can be consolidated onto another
machine, and the now idle server can be turned off, thereby
increasing the power efficiency of the data center.

Migrating a VM requires copying its volatile state from
the source to a destination host. The simplest approach,
stop-and-copy, stops the VM on the source, completely
transfers the VM’s state, and finally resumes the VM on the
destination host. In the presence of service-level agreements
(SLA) between the data center operator and the owner of the
VM requiring a certain availability of service, the stop-and-
copy approach is unfeasible due to its long period during
which the VM remains unavailable.

This downtime is not the only key metric of live mi-
gration. Other important factors include the total migration
time, the total amount of data transferred, and the perfor-
mance degradation of the VM being migrated. Additionally,

the amount of CPU and memory resources and the network
bandwidth required by the migration may also be of interest,
especially in a resource-constrained environment.

Over the past decade, a number of live migration tech-
niques have been proposed [3], [4], [5], [7], [10], each
of which aims at optimizing one or several of the above
metrics. The proposed techniques range from copying the
volatile state iteratively while the VM keeps running on the
source host to moving the core of the VM immediately and
fetch outstanding data on demand. A number of orthogonal
optimizations such as data compression or CPU throttling
have been proposed as well. The different techniques exhibit
distinct characteristics in the key metrics for identical work-
loads. In addition, for a given technique, its performance
shows a large variance subject to the workload running
inside the VM and on the host. In order to apply live
migration effectively, an important problem for data center
operators is thus to select the best migration technique as
a function of SLAs, the operator’s optimization policy, plus
the workload characteristics of the VM and the host.

In this work, we present a method to build accurate
performance estimation models for live migration. Based
on an analysis of a large dataset of live migration profiles
of diverse workloads migrated with different live migration
techniques under varying resource constraints, we employ
Machine Learning techniques to automatically generate a
performance prediction model. The model can estimate the
total migration time, the total amount of data transferred, and
the VM downtime for the different migration techniques. By
virtue of the automatic approach, new migration algorithms
and profile features can be easily added, rendering the
proposed procedure flexible and extensible. We verify the
feasibility of the proposed approach in the QEMU/KVM vir-
tualization environment [6]. Based on over 10’000 migration
profiles, the generated model predicts the total migration
time, the total amount of transferred data, and the downtime
with high accuracy. In ongoing research, we employ the
model in a data center optimization framework to select the
best algorithm for a given situation and constraints.

The remainder of this paper is organized as follows:
Section 2 provides the necessary background on live migra-
tion and discusses the different live migration techniques.
Section 3 details the data collection and model building
process, and Section 4 evaluates the models. Section 5,
finally, concludes the paper and discusses future work.



2. Background

2.1. Live Migration

Live migrating a VM requires moving its entire state
from one physical host to another. In intra-datacenter migra-
tion, the permanent storage is accessed via NAS and does
not need to be moved. The volatile state consists of the
state of the VM’s VCPUs, devices, and its memory contents.
The latter constitute by far the largest part of the volatile
state. The simplest way of migrating a VM is stop-and-copy,
i.e., stopping the VM on the source, transferring the entire
state to the destination, and then resuming the VM. The
long downtime renders this approach impractical; it is thus
common practice to live-migrate VMs. We distinguish the
following three phases (Figure 1):

prepare stop resume

time

source

destination

downtime

total migration time

VM running at full/reduced speed/ VM stopped/

Figure 1. Phases and metrics in live migration.

1) Prepare. Live migration is initiated. The virtual
machine monitor (VMM) puts the VM into a man-
aged mode which typically results in a slightly re-
duced performance. The source host starts sending
(parts of) the volatile state to the destination host.

2) Stop. The VM is stopped both on the source and
the destination host and thus not available to the
user. Small amounts of volatile state, e.g., register
values of VCPUs, are transferred.

3) Resume. The VM is restarted on the destination
host. Missing parts of volatile state are fetched. VM
performance may still be reduced in this phase.

2.2. Live migration metrics

We compare the different live migration algorithms using
the following metrics (Figure 1):

1) total migration time: time period from initiation
to completion of the migration.

2) total amount of transferred data: total amount of
data transferred to the destination host.

3) downtime: time interval during which the VM is
stopped.

The first two metrics are of interest to data center operators
in order to estimate the required resources for the live
migration, whereas the downtime may affect SLAs and/or
the quality of service (QoS) experienced by the users.

2.3. Live Migration Algorithms

QEMU [2] is a popular virtualization platform used both
in industry and academy. The Google Compute Engine [1],
for example, employs QEMU/KVM at the core of their vir-
tualization services. With the addition of a data compression
live migration technique, the latest QEMU platform now
supports the following five live migration techniques.

Pre-copy [3] is the default migration algorithm for most
virtualization platforms. At the heart of pre-copy lies an it-
erative transfer of memory pages. In each step, the modified
memory pages are transferred to the destination host until
the amount of modified data in the last iteration falls below a
given threshold (stop-and-copy condition). The VM is then
stopped, the remaining pages plus the VCPU and device
state transferred, and the VM restarted on the destination
host. If the network bandwidth is lower than the memory
dirty rate, the algorithm does not converge and continuously
sends large amounts of data over the network. The memory
size, the number of modified pages in the working set, the
page dirty rate, and the page transfer rate are the key features
for migration cost estimation of pre-copy [8].

CPU throttling [7] is a technique enforcing conver-
gence of the pre-copy process by deliberately decreasing
the allotted CPU time of a VM in order to reduce its
page dirty rate. CPU throttling can significantly degrade the
performance of the workload running in the VM. The model
thus requires the VM’s CPU utilization as an extra parameter
in addition to the features used in the estimation of the pre-
copy method.

Delta compression [10] is an optimization for pre-copy
that applies delta compression to modified pages during live
migration. This technique may require a significant amount
of additional memory to store the original memory pages
for comparison with the modified ones. To estimate the
performance of delta compression, the amount of modified
data in written-to pages is included.

In the data compression optimization [5], memory
pages are compressed using the zlib algorithm be-
fore transmission. Data compression requires a significant
amount of computation time, and may thus not be a viable
option if the CPU utilization on the server is high. In addi-
tion, the compression performance is highly dependent on
word-level duplication of memory contents. For an accurate
estimation, the degree of word-level duplication needs to be
detected efficiently at runtime.

The post-copy algorithm [4], finally, is diametric to pre-
copy in the sense that the VM is restarted on the destination
host before the vast majority of the volatile state has been
migrated. The algorithm immediately stops the VM on the
source host, transfers only the execution context (VCPU
registers and device state), and resumes the VM on the
destination machine. The contents of the VM’s memory
are transferred from the source machine on demand and
in the background. If the VM accesses a page that has not
yet been transferred it incurs a large performance penalty.
The main advantage of post-copy is that each memory
page is transferred exactly once. The severe performance
degradation of post-copy during the resume phase, however,



limits its applicability in environments with strict SLAs. For
the post-copy algorithm, the downtime is constant and the
total migration time depends linearly on the VM’s memory
size and the page transfer rate.

3. Data Collection and Modeling

3.1. Workloads and Test setup

In order to identify the key features strongly correlated
to the performance metrics of live migration, we collected
data from a wide range of applications running inside a VM.
The application set includes online transaction processing,
a video streaming server and data-parallel applications rep-
resenting workloads in data center environments.

The test environment consists of identical host machines
each comprising an 8-core AMD FX-8300 processor and
16 GB of memory. Three distinct switched gigabit networks
are available for VM service (client access), VM manage-
ment (data transfer during migration), and access to shared
storage. The shared storage service is provided by a NAS
device. VMs are configured with 4 VCPUs and 2 GB of
memory. Both the host and guest VMs run Ubuntu server
14.04 LTS. Virtualization is provided by QEMU/KVM [2].

3.2. Data collection

Table 1 lists the features collected during live migration
of a VM. Features such as the page dirty rate or the working
set’s entropy are collected directly in the virtual machine
monitor (VMM). Others, such as the number of instructions-
per-second (IPS), by querying the hardware’s performance
monitor unit (PMU). The host provides statistics about the
CPU utilization and network utilization. Data collection
starts 20 seconds prior to live migration in order to detect a
VM’s working set. The employed data collection methods
are completely transparent to the VM and do not require any
modifications of the guest operating system or the workloads
running inside the VM.

3.3. Support Vector Regression Model

The proposed model is based on support vector regres-
sion (SVR) [11]. During training, the estimator takes two
input parameters, the vector of features and a target value.
A subset of the features in Table 1 make up the feature
vector, and the target value is the measured target metric
we want to predict. The learning algorithm then performs
regression on the training data by minimizing the error using
support vectors.

The model’s performance is evaluated with four dif-
ferent features vectors: (1) page dirty rate (DR) only, (2)
DR+VM size (VMSize), (3) DR+VMSize+Working set size
(WSSize), and automatically extracted features using the
recursive feature elimination with cross validation (RFECV)
technique. RFECV identifies the relevant features by repeat-
edly removing features with small weights.

4. Model Evaluation

4.1. Model Training

We use the SVM package from the Sci-Kit Learning
Python library [9] to build and evaluate the migration mod-
els. The model is trained with the 10,000+ live migra-
tion profiles obtained by running diverse workloads with
different live migration algorithms under varying network
bandwidth limitations. We first classify the dataset by live
migration algorithm and network bandwidth, leading to
about 400 profiles per configuration. The SVM model is
trained with each set separately to predict the three metrics
total migration time, downtime and total amount of trans-
ferred data. The final model consists of 75 sub estimators,
predicting the three key metrics of live migration algorithms
for five different network configurations.

4.2. Prediction Accuracy

Figure 2 shows the cumulative distribution function
(CDF) of the absolute prediction error for the five live migra-
tion techniques pre-copy, CPU throttling, delta
compression, data compression, and post-copy
in three rows for (a) the total migration time, (b) the down-
time, and (c) the total amount of transferred data. The units
of the x-axis for the three cases are seconds, milliseconds,
and megabytes, respectively. Each plot shows the CDF of
the absolute error for a prediction with four different input
features vectors. The first, DR, only takes the page dirty
rate as an input parameter. DR+VMSize is an input vector
composed of the page dirty rate and the VM’s memory size.
DR+VMSize+WSSize also includes the VM’s working set
size. RFECV, finally, shows the results of the feature vector
obtained by the RFECV technique.

Total Migration Time. The model shows a good pre-
diction accuracy of the total migration time. The average
relative error is below 10% for all algorithms. The 90th-
percentile has an average absolute error of 7 seconds for an
average total migration time of 35 seconds (Figure 2 (a)). We
observe a gradual improvement of the prediction accuracy
as more features are added to the models for the pre-copy-
based algorithms (columns one to four). RFECV achieves the
highest accuracy, although the difference to using only the
three features DR+VMSize+WSSize is surprisingly small.
For post-copy (column 5), the size of the VM’s memory
is the dominant factor, the additional input features included
by RFECV even reduce accuracy due to the increased noise
in the data.

Downtime. Similar to the estimation of the total mi-
gration time, the proposed model is able to predict the
downtime with a relatively small absolute error of 280ms for
the 90th-percentile over all techniques. For pre-copy-based
algorithms, RFECV again achieves the highest accuracy, yet
suffers from increased noise in the post-copy technique.
Since the absolute downtime is short, an absolute error of
only 280ms translates to a large relative error of 50%.



Feature Description Source

Page Dirty Rate Average page dirty rate VMM
VM Size Number of allocated pages to the VM VMM
Writable Working Set Size Size of modified pages for given period VMM
Working Set Entropy Shannon’s entropy of the working set (byte level) VMM
Cache Misses Number of memory accesses not served by any caches for a given period PMU
IPS Ratio between the number of retired instructions and unhalted cycles PMU
L2 Cache WB Count L2 cache write-back count for a given period PMU
Storage NIC Utilization Utilization of the NIC dedicated for shared storage host
Available CPU resource on Host Utilization of processors in the host host

TABLE 1. LIST OF FEATURES OF THE ML MODEL

pre-copy CPU throttling delta compression data compression post-copy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

C
D

F

DR
DR+VMsize
DR+VMSize+WSSize
RFECV

average: 38 s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

C
D

F

average: 36 s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

C
D

F

average: 32 s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

C
D

F

average: 50 s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

C
D

F

average: 19 s

(a) total migration time (x-axis: seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
D

F

average: 903 ms
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
D

F

average: 694 ms
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
D

F

average: 443 ms
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

C
D

F

average: 1818 ms
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
D

F

average: 86 ms

(b) downtime (x-axis: milliseconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
D

F

average: 3077 MB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
D

F

average: 2139 MB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
D

F

average: 1894 MB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
D

F

average: 820 MB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

C
D

F
average: 1069 MB

(c) total transferred data (x-axis: megabytes)

Figure 2. Cumulative distribution function (CDF) of the absolute prediction error for the metrics (rows a-c) and live migration techniques (columns 1-5).

Total Transferred Data. The total transferred data
shows a similar pattern as the total migration time. This
is not an unexpected result since in most cases the total
amount of transferred data can be computed by multiplying
the total migration time with the page transfer rate. A
notable exception is data compression where the high
computational overhead can become the bottleneck. The
90th-percentile is 300 MB for 1640 MB of data transferred.
The average relative error is only 7.3%.

5. Conclusion and Future Work

In this ongoing work, we have outlined a technique to
build accurate prediction models that are able to estimate key
parameters of different live migration algorithms under vary-
ing resource constraints and VM workloads. We show that
with a moderate set of training data, an automated Machine

Learning-based approach is able to accurately predict the
total migration time, the downtime, and the total amount of
data transferred for all live migration algorithms supported
by QEMU/KVM.

This work will be extended as follows. Currently, all
experiments were performed on lightly-loaded hosts. We
are conducting a series of experiments under resource-
constrained situations to better model live migration perfor-
mance in the presence of hot spots. We expect that this will
result in new input features to the model such as the host’s
available CPU load, the available memory, and network
bandwidth.

In future work, we will integrate the model into a fully-
automated data center management framework where it will
play a key role in the VM placement and migration process
with the goal of maximizing the data center’s efficiency
while at the same time respecting SLA constraints.



Acknowledgments

We thank Jinho Song for his advice on machine learn-
ing and Jinwoo Choi for assisting us in running the ex-
periments. This work was supported in part by the Na-
tional Research Foundation of Korea (NRF) funded by
the Ministry of Science, ICT & Future Planning (No.
2012R1A1A1042938) and by the Promising-Pioneering Re-
searcher Program through Seoul National University (SNU)
in 2015. ICT at Seoul National University provided research
facilities for this study.

References

[1] “Google Compute Engine,” http://https://cloud.google.com/compute,
2015, online; accessed November 2015.

[2] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, 2005, pp. 41–46.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in
Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2. USENIX Association,
2005, pp. 273–286.

[4] M. R. Hines and K. Gopalan, “Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning,”
in Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments. ACM, 2009, pp. 51–
60.

[5] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine
migration with adaptive, memory compression,” in Cluster Computing
and Workshops, 2009. CLUSTER’09. IEEE International Conference
on. IEEE, 2009, pp. 1–10.

[6] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:
the linux virtual machine monitor,” in Proceedings of the Linux
Symposium, vol. 1, 2007, pp. 225–230.

[7] Z. Liu, W. Qu, W. Liu, and K. Li, “Xen live migration with slowdown
scheduling algorithm,” in Parallel and Distributed Computing, Appli-
cations and Technologies (PDCAT), 2010 International Conference
on. IEEE, 2010, pp. 215–221.

[8] S. Nathan, U. Bellur, and P. Kulkarni, “Towards a comprehensive per-
formance model of virtual machine live migration,” ACM Symposium
on Cloud Computing, 2015.

[9] Scikit-learn.org, “scikit-learn: machine learning in python,” 2015.
[Online]. Available: http://scikit-learn.org/

[10] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of delta
compression techniques for efficient live migration of large virtual
machines,” ACM Sigplan Notices, vol. 46, no. 7, pp. 111–120, 2011.

[11] V. Vapnik, S. E. Golowich, and A. Smola, “Support vector method for
function approximation, regression estimation, and signal processing,”
in Advances in Neural Information Processing Systems 9. Citeseer,
1996.


