
1

Efficient Checkpointing of Live Virtual Machines
Bernhard Egger, Eunbyung Park, Younghyun Jo, Changyeon Jo, and Jaejin Lee

Department of Computer Science and Engineering
Seoul National University, Seoul, Korea

{bernhard,eunbyung,younghyun,changyeon}@csap.snu.ac.kr, jaejin@snu.ac.kr

Abstract—The ability to save the state of a running virtual machine (VM) for later restoration is an important tool for home, server, and
virtual desktop cloud (VDC) environments in order to achieve optimal and balanced hardware utilization. With guest memory sizes of
four to eight gigabytes being the norm the time- and space-overhead of storing VM checkpoints still prevents an effective use of the
technique. This work presents a method for fast and space-efficient checkpointing of VMs. Based on the observation that operating
systems cache disk blocks in memory, the proposed technique transparently intercepts I/O operations and maintains an up-to-date
mapping of memory pages and disk blocks containing identical data. At a checkpoint, those memory pages are excluded from the
checkpoint image leading to a significant reduction of both the time and space required to take a checkpoint of a running VM.
The broad applicability and good performance of the proposed method is demonstrated by an extensive set of experiments. We have
implemented the technique for para-virtualized (PV), PVHVM, and fully-virtualized (HVM) guests in the Xen hypervisor. In comparison
with an unmodified Xen hypervisor, experiments with Linux and Windows guests, on average, achieve a 86%, 76%, 53%, and 47%
reduction in the stored data and a 73%, 62%, 47%, and 38% shorter time required to take a checkpoint for PV, PVHVM, HVM Linux,
and HVM Windows guests, respectively.

F

1 INTRODUCTION

V IRTUALIZATION technology continues to gain im-
portance in server, desktop, as well as embedded

systems. Its use is especially prevalent in data centers
and virtual desktop cloud (VDC) environments where
virtualization technology is employed to run multi-
ple instances of operating systems (OS) concurrently
on one single physical host. This allows for custom-
tailored environments, better use of physical resources,
higher availability through live migration and better
security [1]–[8].

A useful feature of virtualization technology is virtual
machine (VM) checkpointing, the ability to save and
restore the state of a virtual machine. VM checkpoints
(also called snapshots) are convenient in many situations,
be it for simply stopping a VM and later resuming work
on a desktop computer, for migrating a VM to another
host in a data center, or for performing intrusion anal-
ysis of commodity operating systems by continuously
taking snapshots of the system under attack. In VDC
environments, checkpointing is used to free resources
while a user is not logged in. The state of the user’ VM
is saved to external storage when the user terminates the
connection to his virtual desktop; and the VM is restored
from the checkpoint as soon as the user re-establishes the
link to his desktop.

To completely record the state of a virtual machine,
the virtual machine monitor (VMM) is required to store
the virtual CPU state, the current state of all emulated
devices, and the contents of the virtual machine’s mem-
ory to non-volatile memory. The memory of the VM
is stored to disk in its entirety, hence the size of the
snapshot is dominated by the amount of the guest’s

memory. With rapidly growing memory sizes for virtual
machines, the size of snapshots thus becomes more and
more of a concern, especially so in VDC environments.
Assuming a VDC with 1000 user desktops with 8 GB of
memory each and an average of 20% of users not being
connected to their desktop, 200 times 8 GB = 1.6 TB are
necessary exclusively to store the volatile state of inactive
VMs. Furthermore, saving/restoring a single checkpoint
to/from disk at a speed of 200MB per second requires
at least 8 GB / 200MB/s = 40 seconds.

In order for checkpoint-restore technology to be ap-
plied effectively in VDC environments, both the size of
the checkpoints as well as the time required to save
and restore the checkpoints must be reduced. Several
techniques have been proposed to exclude memory
not currently in use [4] or to compress the checkpoint
data [9]. The former technique, however, is no applicable
to fully-virtualized systems and the overhead of (de-)
compressing memory data typically increases the time
required to save/restore a checkpoint.

This paper proposes a fast and space-efficient method
to save and restore checkpoints of a VM. The proposed
technique not only reduces the size of the checkpoint
images considerably, but also the time required to save
checkpoints is significantly shorter than existing meth-
ods.

The proposed method is based on the observation that
it is not necessary for the VMM to store the entire con-
tents of the VM’s memory because a significant portion
of the data in memory is already available on external
storage. This is caused by modern operating systems
using the better part of the unused memory as a cache
commonly known as the page cache [10]. This page cache
contains data that has been recently read from (or is to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

be written to) block devices in order to reduce the large
access latency of external devices.

In a VM environment, all I/O operations to devices
pass through the VMM. In the proposed technique,
the VMM transparently intercepts I/O operations to
block devices and maintains data structures that map
the blocks of non-volatile storage (a virtual disk or a
partition) to the VM’s memory pages. At a checkpoint,
memory pages that are known to be identical copies of
disk blocks are excluded from the VM memory image.

We have implemented the proposed technique in the
most recent Xen hypervisor 4.5 [11] for para-virtualized
(PV), fully-virtualized (HVM), and PVHVM guests. Ex-
periments with an extensive set of benchmarks on Linux
and Windows guests demonstrate the broad applicability
and good performance of the proposed method.

The contributions of this paper are as follows:
• We introduce a fast and space-efficient checkpoint-

ing technique for virtual machines. By excluding
memory pages whose contents are available on non-
volatile storage from the checkpoint image both
the space as well as the time required to take a
checkpoint are significantly reduced.

• We have implemented the proposed technique in
the Xen 4.5 hypervisor. We support para- and fully-
virtualized guests and have conducted the exper-
iments with Microsoft Windows and Linux guest
operating systems. We identify and correctly handle
all scenarios that could lead to a corruption of the
VMM’s disk-to-memory mapping data structures
and thus might result in a corrupted memory image.

• We compare the performance of the unmodified Xen
VMM with three virtualization levels PV, PVHVM,
and HVM, both for individual checkpoints as well
as incremental checkpoints. Compared to unmodi-
fied Xen, we achieve an average reduction in the
required disk space ranging from 47% (HVM -
Windows guest) to 86% (PV - Linux guest) and
a reduction in the checkpointing time from 38%
(HVM - Windows guest) to 73% (PV - Linux guest).
The proposed method also outperforms incremental
checkpointing by a 57% reduction in disk space and
a 26% reduction in time to take a checkpoint.

• The optimized restore procedure from space-
optimized checkpoint images incurs an acceptable
overhead or even outperforms unmodified Xen.

The rest of this work is organized as follows: Sec-
tion 2 discusses related work. Section 3 provides some
background on virtualization and VM checkpointing in
particular. Section 4 motivates the proposed technique,
and Sections 5 and 6 discuss the implementation of the
proposed technique for the different virtualization tech-
niques. The experimental setup is described in Section 8,
and Section 9 presents the results. Finally, Section 10
concludes the paper.

2 RELATED WORK
While the available CPUs and I/O bandwidth on a
physical machine can be fairly time-shared or multi-

plexed, allocating or reclaiming memory dynamically is
not easy due to the fact that the memory has an inherent
weakness as a shared resource. Reclaiming memory from
a running VM without seriously affecting its perfor-
mance is not easy as the VMM has limited knowledge
of the memory contents and thus the importance of a
specific memory page to the VM. A common technique
to reclaim memory is Ballooning [4], in which the VMM
communicates with a driver running inside the VM. This
ballooning driver requests non-shared memory from the
guest operating system. Since this memory is not used
to hold any meaningful data, the VMM can reclaim the
associated memory pages and assign them to another
VM. Most major VMMs, such as KVM [12], VMware [13],
VirtualBox [9], and Xen [14], make use of the ballooning
technique. Ballooning can also be used in conjunction
with space-efficient checkpoints by excluding the mem-
ory allocated to the balloon driver. Allocating a lot of
memory to the balloon driver, however, reduces the
amount of memory available for the page cache and
thus will lead to slightly decreased performance of the
VM after restoration. Our technique, on the other hand,
directly identifies duplicated pages and does not affect
the performance of the VM after restoration.

Transcendent memory [15], [16] is another approach to
efficient memory management between multiple VMs,
and in terms of dealing with free memory it resem-
bles our approach. It maintains a system-wide global
memory pool that contains memory not allocated to
any VM. Para-virtualized guests can access that memory
indirectly through an API. Several approaches have been
proposed such as efficient memory provisioning [17],
memory sharing between multiple VMs [18], [19], or
hot spot migration [20]. Transcendent memory cannot
be used to reduce the space or time of checkpoints.

We track a VM’s I/O operations to infer a mapping
between the external storage and the pagecache of the
guest in order maintain information about duplicated
pages in the VM’s memory and external storage. The
works of Jones [21] and Lu [22] use a similar approach.
Both approaches focus on the working set size (WSS)
estimation of a VM in order to allot the exact amount
of memory needed by the VM. The page miss ratio
curve [23] used to estimate the WSS is based on the reuse
distance [21]. The reuse distance is tracked by detecting
promotion and eviction of pages to the page cache. While
external requests from or to secondary storage can be
traced transparently in the VMM, the eviction of a page
from the page cache is hidden from the VMM. Geiger
uses heuristics to detect that pages have been evicted
from the page cache, whereas in the VM memory access
tracking approach the guest is modified to notify the
VMM of any page evictions from the page cache.

Fast resume from a VM checkpoint image is equally
important to give the best experience to users. Zhang [24]
proposed fast restoration of VM using working set esti-
mation. In their work, a VM is resumed early after only
restoring the workingset of the checkpointed image, the
remaining contents of the image are fetched in the back-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

ground while the VM is already running. This technique
focuses only on reducing the restoration time and does
not address reducing the size of the checkpoint image.
Egger et al. [25] have recently proposed a method to
reduce the restoration time further, below that of original
Xen. Their idea is a combination of the method presented
here and Zhang’s technique of early VM re-initialization.

The approach proposed in this paper is independent
from other approaches that try to reduce the mem-
ory footprint of a VM or its snapshot. VirtualBox [9]
compresses the checkpoint image; our technique can be
combined with data compression to achieve even smaller
checkpoint images. In comparison to previous work [26],
this work extends support for PVHVM guests and the
hardware-assisted virtualized memory translation capa-
bilities of modern CPUs. While previous work suffered
from a 3- to 4-fold increase in the restoration time this
work includes an optimization that performs on par with
unmodified Xen.

Applications benefiting of efficient VM checkpoints
are not limited to VDC environments. OS debugging or
intrusion analysis by means of a VM also profit from fast
and space-efficient checkpointing [7], [27]–[29].

3 BACKGROUND

3.1 Virtual Machine Monitors
Virtualization allows the execution of operating sys-
tems inside a virtualized hardware environment. This
virtualized environment is provided by a virtual ma-
chine monitor (VMM) or hypervisor. VMMs support para-
virtualized, fully-virtualized, or both environments. In a
para-virtualized environment, the VMM exposes certain
APIs to the VM. The VM communicates with the VMM
through this para-API. The weakness of this approach is
that the guest operating system needs to be modified in
order to take advantage of the para-API. Nevertheless,
para-virtualization is a pervasive virtualization technol-
ogy supported by most major VMMs due to its benefits
such as improved I/O performance [30], [31], better
memory management [17]–[19], or load balancing [20].
Full virtualization, on the other hand, provides a com-
plete emulation of the underlying hardware and does
not require guest modification. This approach is more
difficult to implement, and emulating certain function-
ality may lead to reduced performance in the guest. It
is still the prevalent emulation method because guest
operating systems that cannot be modified easily (such
as Microsoft Windows) can be supported as well.

Recent versions of the open source Xen Hypervi-
sor [14] offer para-virtualized, full virtualization, and
the so-called PVHVM virtualization. With PVHVM, a
full-virtualized guest uses specialized para-virtualized
drivers to access hardware and can thus achieve nearly
the same performance as PV guests.

3.2 VM Checkpointing
VM checkpointing refers to the process of saving the
state of a virtual machine to non-volatile storage so

that it can be completely stopped and restored in its
exact state at a later time. Checkpoints can be taken
of running as well as stopped VMs. A snapshot of a
running VM includes the VM’s memory contents and the
state of its devices including the CPU(s). A checkpoint of
a stopped VM is usually limited to creating a snapshot
of the current state of its external storage. In this work,
we focus on improving the process of checkpointing a
running system.

A snapshot of a running system comprises the context
of the virtual CPUs (VCPU), virtual devices connected
to the VM (such as network adapters, keyboard, and
the display), as well as a copy of the memory allocated
to the VM. Typically, it is assumed that the external
storage connected to the guest (i.e., its virtual disk) is not
modified until the guest is restored. This is a reasonable
assumption since modifying the contents of the disk
while the guest is not running will most likely make
it impossible to resume the guest. Modern operating
systems often cache disk blocks in memory, and mod-
ifying the disk behind the guest’s back would lead to
inconsistencies in that cache. The following paragraphs
describe the differences in context of checkpointing for
the different virtualization technologies.

Para-virtualized environments. When the VMM
checkpoints a VM, the para-virtualized guest is first
notified through the para-API. The guest itself carries out
several tasks including disconnecting devices, disabling
interrupts, and marking page tables. After finishing the
preparatory work, the guest transfers control to the
VMM. The VMM uses the privileged domain dom0 to
save the state of the VM to persistent storage. In addition
to the contents of the VM’s volatile memory, the state of
the virtual devices owned by the guest, and context of
the VCPUs are stored as well. Restoring a guest running
in a VM is the exact opposite process. The domain dom0
first creates a new user domain, allocates the necessary
amount of memory, assigns and restores the context
of the VCPUs and the virtual devices. Control is then
transferred to the guest which reconnects the devices to
its event queue, re-enables interrupts and then continues
executing where it left off before the checkpoint. Since
the guest is involved in the checkpoint/restore process,
it is possible to exclude unallocated memory pages from
the checkpoint image by modifying the code of the guest
OS.

Fully-virtualized environments. In fully-virtualized
environments, the guest is not aware that it is being
checkpointed; this, for example, hinders the exclusion
of free memory pages from the checkpoint image. The
VMM stops the guest, and saves the state of all virtual
devices owned by the guest as well as the contents of the
VM’s volatile memory to disk. The guests page tables
can be saved as-is since they do not contain physical
machine addresses (the VMM uses shadow page tables
or hardware assisted paging to fully virtualize memory
accesses, see Section 6). Restoring a fully-virtualized
guest is similar to a para-virtualized one. In a fully-
virtualized environment, however, the VMM has to re-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

TABLE 1
Amount of duplication between memory and disk after

large I/O operations

Total Memory Size
512 MB 1024 MB

Linux 466 MB (91%) 966 MB (93%)
Windows 353 MB (84%) 860 MB (84%)

initialize the devices itself since the guest expects the
devices to operate as if it had never been checkpointed.

PVHVM environments. PVHVM guests are check-
pointed and restored in a similar way as fully-
virtualized guests, only the device drivers follow the
para-virtualized approach. In the current implementa-
tion in Xen, the guest is aware that it is being check-
pointed and we can thus exclude free memory pages
from the checkpoint image.

4 SPACE-EFFICIENT CHECKPOINTING

To achieve space as well as time efficient checkpointing,
the proposed method eliminates duplicates of pages
in the checkpoint file that are also available on the
external storage of the VM. The key idea is to detect
promotion of memory pages into the guest’s page cache
by transparently intercepting I/O requests to external
storage by the guest.

4.1 Motivation

Even for virtual machines, these days memory sizes of
several gigabytes are the norm. The operating system
and the running applications often occupy only a small
fraction of the total available memory, leaving most of
the memory unused. Modern operating systems use this
unused memory to cache recently read data as well as
data yet to be written to disk thereby hiding the long
access latency to external storage. As demonstrated in
Table 1, depending on the usage scenario and the size
of the memory, the amount of memory allocated to this
page cache can exceed 90% of the physically available
memory if the guest VM processes large amount of I/O
requests [26]. The data in Table 1 was generated by
saving the guest’s memory after booting the system up
and copying a large amount of data. We then compared
the memory contents to the data on disk. While the
experimental setup may not be an overly realistic usage
scenario, it shows the amount of duplication between
memory and disk in an extreme case.

Up to this day, VMMs typically store a one-to-one
image of the guest’s memory in the snapshot. Table 2
lists the size of the VM snapshot (memory image plus
device state) for major VMMs such as VirtualBox [9],
VMware [13], and Xen [14]. The snapshots for VMware
and Xen are both a bit larger than the VM’s memory size
due to the inclusion of the volatile state for its VCPUs
and devices. VirtualBox also stores the entire contents
of its memory, but compresses the data. The presented
technique here is orthogonal to data compression and

TABLE 2
Size of snapshots of a VM with 4 GB of memory

VMM Snapshot Size (MB) Remarks
VirtualBox 1542 compressed
VMware 4234
Xen 4100

Disk1
0 1 2 3 4 5 6pfn

intercept page_to_block
Hypervisor

Driver Domain
(dom0, stubdom)

domU(HVM)

HVM I/O

domU(PV, PVHVM)

driver frontend

ioemu driver backend

88

disk block number

96

Fig. 1. Disk I/O flow in the Xen VMM and the page-to-
block map

can be included in VirtualBox to achieve yet smaller
checkpoint images.

The results from Table 1 and 2 suggest that there exists
a big potential to reduce the size of VM snapshots. In-
stead of storing the duplicated data in the VM snapshot
itself, a reference to the external storage medium suffices.
Such an approach not only reduces the size, but also
shortens the time required to save a snapshot because
the time required to store a snapshot is dominated by
the amount of data to be saved to external storage.
The proposed method also affects restoration. Instead
of being able to read the memory contents sequentially
from disk, the contents need to be composed from the
snapshot image and data spread over the VM’s external
storage. Without further precautions this may lead to
an increase in restoration time, however, we show that
a simple optimization is able to reduce the restoration
times below that of unmodified Xen for PV and PVHVM
guests and a minimal increase for HVM guests.

There exist other opportunities to further reduce the
size of snapshots, such as excluding free memory pages
and memory that is not mapped into the guest’s address
space from the snapshot image. The former can only be
exploited in para-virtualized and PVHVM environments
since the VMM itself has no knowledge about which
mapped memory pages the guest is currently using and
which represent free pages. The latter can be excluded
from the snapshot both in para-virtualized and fully-
virtualized environments by inspecting the guest’s page
tables and checking which virtual pages are not mapped.

4.2 Transparent I/O Interception
In virtualized environments, the VMM virtualizes some
hardware resources in order to make them visible to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

guests running in VMs as if they were dedicated. For
some types of hardware resources such as network in-
terface cards (NIC) or disks, concurrent accesses to these
hardware resources by multiple VMs need to be arbi-
trated by the VMM. While accesses to physical memory
are implicitly multiplexed by the memory controller and
the hardware bus arbitration, simultaneous requests to
the physical disk or NIC without meditation of software
may cause unknown behavior or even device crashes.
For this reason, I/O operations to secondary storage
without hardware virtualization support are always un-
der control of the VMM or a driver in a privileged
domain. At those points, it is thus possible to intercept
all I/O requests transparently.

Figure 1 shows the flow of I/O requests to disk in
the Xen hypervisor for para-virtualized, PVHVM and
fully-virtualized guests. An I/O request from a para-
virtualized or PVHVM guest running in the user domain
domU (Figure 1 on the right) is forwarded directly to
the VMM’s driver domain (dom0, stubdom). I/O requests
to the physical disk can be intercepted in the driver
backend in the VMM’s driver domain for the disk.
For fully-virtualized guests (Figure 1 on the left), I/O
requests go through and can be intercepted in ioemu
located in the VMM’s driver domain

Mapping page frames to disk blocks. The mapping
of a VM’s memory contents to data on disk is main-
tained by transparently tracking all I/O requests from
the guest to external storage. The gathered information
is stored in a so-called page to block map which is
maintained separately for every running VM. Since the
number of memory pages is typically much smaller
than the number of disk blocks, the map is indexed
by the guest’s memory page index, the so-called page
frame number or PFN. The data stored in the map is
the 8-byte disk block number. The page to block map
is updated whenever the guest issues an I/O request.
Both the space and runtime overhead of maintaining
the page to block map are relatively small: for a VM
with four gigabytes of memory, the page to block map
requires eight megabytes of memory. I/O operations are
costly operations by themselves; in most cases the table
update are hidden by the I/O latency (See section 9).

Figure 1 shows the contents of the page to block map
after the guest has read the disk blocks number 88 and
96 into its memory pages at index 4 and 5, respectively.

Modifications to pages in the page cache through
memory write operations are hidden from the VMM and
thus render the mapping in the page to block map in-
valid. In order to detect in-memory modifications to such
pages, we either have to validate at checkpoint time that
the memory pages have not been modified or intercept
all write operations to pages known to be duplicated on
disk. The former approach is taken with para-virtualized
and PVHVM guests, the latter with HVM guests. The
following sections describe the implementation for the
different virtualization technologies in detail.

4.3 Restoring from Space-Optimized Checkpoints
To restore a VM from an unoptimized checkpoint image,
the VMM first creates the guest VM’s domain with
the necessary VCPUs and devices and then loads the
contents of the entire checkpoint image into the guest
VM’s memory. Unless the checkpoint image is severely
fragmented on disk, this operation will run at almost op-
timal speed. Restoration of a VM from a space-optimized
checkpoint proceeds in the same order, however, the
contents of memory pages known to be duplicated on
disk are scattered all over the VM’s disk. In a naı̈ve
implementation, the VMM processes the entries on the
page to block map one by one which leads to an ex-
cessive overhead on rotating magnetic disks caused by
high number of read head repositionings. By sorting the
entries in the page to block map by the disk block number
most of this overhead can be avoided and, compared
to unmodified Xen, the restoration process takes less
(for PV and PVHVM guests) or only marginally longer
(for HVM guests). With the advent of solid-state disk
drives (SSDs) that do not exhibit a synch overhead,
we expect at least equal performance also for fully-
virtualized guests. The experimental results in Section 9
discuss the results along with the overhead caused by
sorting the page to block map.

5 PARA-VIRTUALIZED AND PVHVM GUESTS
For PV and PVHVM guests, there exist two types of
pages that do not need to be included in a snapshot:
pages that contain data that is duplicated on disk and
pages that are free or not in use by the VM.

5.1 The Page Cache
The operating system maintains consistency between the
page cache and the disk by periodically flushing dirty
pages (i.e., pages whose contents have been modified)
to disk. At the moment of the checkpoint, however,
dirty pages may be present in the page cache. There are
four distinct operations that can render a page in the
page cache dirty: write system calls, memory mapped
I/O, direct I/O, and I/O at a sub-page granularity. The
following paragraphs describe each of these operations
in detail and show how to identify dirty pages so that
the VMM can include them in the memory image of the
checkpoint.

The write system call. When a process issues a write
system call, the file descriptor, the user buffer and the
size of the write operation are passed as parameters.
The file descriptor points to a specific file, and the user
buffer is normally located in the user heap or global
buffer memory as shown in Figure 2 (a). If a page cache
hit occurs the kernel marks the affected pages dirty in
its internal data structures and then performs a simple
memory copy from the user buffer to the pages in the
page cache. If the pages are not present in the page cache
the kernel first allocates a sufficient number of pages in
the page cache, marks them dirty, and then performs the
memory copy operation. The interpretation of a page’s

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

struct page {
 flags.dirty
};

 Hypervisor

Disk

Guest OS

3. Disk write

2. Memcpy

User Space

User buffer

Kernel Space

Page cache

1. Set
dirty flags

(a) Write system call

struct page {
 flags.dirty
};

 Hypervisor

Disk

Guest OS

3. Disk write

1

….....

1. Set
dirty bitUser Space

User buffer

Kernel Space

Page cache

PTEs Dirty

2. Set
dirty flags

(b) Memory-mapped I/O

struct page {
 flags.dirty
};

 Hypervisor

Disk

Guest OS

1. Disk write

User Space

User buffer

Kernel Space

Page cache

(c) Direct I/O

Fig. 2. Write Operations : write system call, memory-mapped I/O, and direct I/O.

dirty flag is thus that the contents of the page differ
from the data on disk. Unless the VMM contains guest-
specific code, modifications to internal data structures of
the guest are not possible. The VMM is thus not aware
dirty pages in the page cache.

PV/PVHVM guests perform preparatory work prior
to being checkpointed. We insert an additional phase
that scans the dirty bit of the kernel’s page cache data
structures and returns that information to the VMM such
that it can exclude dirty pages from the page to block
map. An alternative would be to write all dirty pages
in the page cache to external storage before performing
the snapshot. We chose not to follow this approach as it
would prevent the user from taking precise snapshot at
very specific moments.

Memory mapped I/O. The pages involved in mem-
ory mapped I/O are part of the guest kernel’s page
cache and the user is allowed read/write access to these
pages (Figure 2 (b)). Since memory write operations
go undetected by the VMM, the guest kernel itself is
not immediately aware of modifications to pages used
for memory mapped I/O. To detect write operations to
memory mapped pages in the page cache, the kernel
periodically scans the dirty bit of the corresponding page
table entries (PTE) and sets the dirty flag in the page
cache data structures accordingly.

When a guest is checkpointed it is possible that some
dirty bits in the PTEs have not yet been propagated
to the corresponding dirty flags in the page cache. The
VMM is aware which memory pages contain the guest’s
page tables and scans the user address space for dirty
bits. The corresponding entries in the page to block map
are then removed.

Note that the kernel often maps memory pages into
its own address space. The Linux kernel, for example,
maps the entire kernel address space with the dirty bit
set. We therefore do not consider the PTEs of kernel
memory as candidates for PTE scanning. Since most
modern operating systems including Microsoft Windows
and Linux use separate address spaces for user and
kernel processes, it is not difficult to distinguish the PTEs
of kernel memory pages.

Direct I/O. Direct I/O refers to file system I/O op-

erations that bypass the OS-level page cache (Figure 2
(c)). When a self-caching application opens a file for
unbuffered I/O, pages that have already been cached
for that file are dropped from the page cache. The
user process is responsible to provide buffers for direct
I/O. These buffers are located in the user’s address
space, and the application is responsible for maintaining
consistency between the data in memory and on disk.

The proposed method transparently traces all I/O
operations, hence the memory pages used as buffers in
direct I/O are also recorded in the page to block map.
However, since these user mode buffers are not part of
the page cache we conservatively assume that all pages
used for direct I/O are dirty and include them in the
checkpoint image.

Sub-page I/O granularity. In many modern operat-
ing systems including Linux, the majority of disk I/O
operations are performed at memory page granularity
(typically 4 KB) as opposed to the smaller granularity
of disk blocks. There are several reasons for this, the
most compelling being the ever increasing trend towards
page-based file systems, more efficient manageability of
the memory, and compatibility for other kernel com-
ponents, such as virtual memory management. How-
ever, depending on the type of the file system or the
underlying block device, finer-grained block-based I/O
operations (typically 512 or 1024 bytes) may be necessary
to handle file system metadata (e.g., superblocks, meta
data, journal data, and so on). To cache I/O operations
performed at block granularity, a page is logically di-
vided into several subpages that are managed separately.
We do not track this type of I/O operations because the
number of such blocks is rather low and thus does not
justify the considerable overhead of handling them prop-
erly. The page split into sub-pages are identified during
the preparatory work and included in the checkpoint
image.

5.2 Free Pages

Pages that are not in use by the guest at checkpoint time
do not need to be saved. Ignoring free pages does not
hamper correctness because no assumptions about the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

contents of free pages are made. We identify free pages
as part of the preparatory work and exclude them from
the checkpoint image.

5.3 Tracking I/O vs. Processing Data in the Guest
For PV/PVHVM guests transparent tracking of I/O
is not absolutely necessary. Instead, the guest could
provide the necessary data about what pages contain
data duplicated on external storage to the VMM at
checkpoint time. In the current implementation of the
proposed technique, we chose to track I/O operations
and update the mapping at checkpoint time as described
above in order to keep the modifications of the guest to
a minimum.

6 IMPLEMENTATION FOR FULLY-VIRTUALIZED
GUESTS
The major difference between PV/PVHVM and HVM
environments is that in the latter the VMM cannot obtain
information about the contents of memory pages from
the guest. For example, allocated but unused memory
pages cannot be excluded from HVM guest snapshots
since the memory of a VM is a black box to the VMM.
Instead, the VMM itself must track all I/O operations
to infer duplication between the VM’s memory and the
external storage and maintain a consistent page to block
map.

6.1 Reverse Mapping and Unaligned I/O
Unlike in paravirtualized environments, a reverse map-
ping from disk blocks to memory pages is required
with full virtualization. The following sequence of I/O
requests illustrates the need for a reverse map (pfn
denotes the index to a 4 KB memory page, the blocknum
points to a 512-byte disk block):

1) READ [pfn:1, block num:16, size:4K]
2) READ [pfn:3, block num:16, size:4K]
3) WRITE [pfn:2, block num:16, size:4K]

After the guest OS has issued the two read operations,
the page to block map contains two references to block
#16 at indices 1 and 3. The subsequent write operation
to block #16 must first invalidate the entries at positions
1 and 3 and then add a new reference to block #16
at index 2 of the page to block map. To implement
this invalidation efficiently, the VMM maintains a hash
map providing a reverse mapping from disk blocks to
memory pages. The disk block number is used as the
key, and the data is a linked list containing the indices
of all associated memory pages.

This reverse mapping is also used to keep track of I/O
requests that are not aligned at page granularity:

1) READ [pfn:1, block num:16, size:4K]
2) READ [pfn:2, block num:24, size:4K]
3) WRITE [pfn:3, block num:20, size:4K]

After the two read operations have been issued, the
page to block map contains two references to block #16
and #24 at indices 1 and 2, respectively. A subsequent

write operation to block #20 must invalidate both entries
since it spans the two entries in the page to block map.
In order to correctly detect and invalidate such entries,
the offset to the next lower 4-KB boundary is also
recorded in the reverse page to block map.

6.2 Maintaining Consistency

To detect in-memory modifications to pages that are
currently tracked by the page to block map, the VMM
marks all such pages read-only in the physical memory
management unit (MMU). There are two supported
techniques to provide the illusion of access to physical
page tables to HVM guests: shadow page tables and
hardware-assisted paging (HAP). In the following, we
describe how to handle both of these cases.

Shadow page tables. On older processors that do
not support HAP, the fully-virtualized guest’s physical
page tables are monitored and mirrored by the VMM.
The (virtualized) page table base register managed by
the guest allows the VMM to traverse the guest’s page
table structure and create a shadow copy of each page.
The page available to the guest contains pseudo-physical
addresses (PFNs) which are then translated by the VMM
to machine-physical addresses (MFNs) in the shadow
page tables.

To detect modifications to its page table structure, the
VMM marks all memory pages containing page tables of
the guest read-only. A subsequent write operation to such
a page will trigger a page fault which is intercepted and
allows the VMM to update the corresponding shadow
page table. There are a number of subtleties associated
with shadow page tables; these are, however, not impor-
tant for our work and outside the scope of this paper.

To intercept write accesses to pages tracked in the
page to block map, we mark all entries in the shadow
page pointing to such pages read-only. This happens
whenever the page to block map gets updated. Similarly,
whenever the guest OS maps a page into its address
space, we check if it is present in the page to block map
and, if so, mark it read-only. As soon as the guest tries to
modify to a write-protected page, a page fault exception
is raised. The VMM detects that the guest is about to
modify a page in the page to block map, deletes the
relevant entry from the map, re-maps the page as read-
write, and restarts the aborted write operation.

Hardware Assisted Paging (HAP). Modern processors
provide hardware-assisted virtualized memory transla-
tion. HAP is termed extended page tables (EPT) in Intel
CPUs and nested page tables (NPT) in AMD proces-
sors [32]. HAP supports a global mapping of physical-
to-machine pages per domain (i.e., a guest VM), we
can thus simply flip the read-only bit in the physical-to-
machine page table and do not need to track all entries
in shadowed page tables pointing to a physical memory
page. The page fault caused by a write operation to a
protected page is intercepted by the VMM, and the cor-
responding entry deleted from the page to block map.

Figure 3 shows the difference between shadow page

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

SPT for process 1

Memory

virtual-to-machine
address translation

SPT for process 2

SPT for process 3

(a) Shadow page tables

PT for process 1

EPT/NPT

virtual-to-physical
address translation

Memory

physical-to-machine
address translation

PT for process 1PT for process 2

PT for process 3

(b) Hardware-assisted paging (EPT/NPT)

Fig. 3. Virtual-to-physical memory address translation with shadow page tables and hardware-assisted paging.

tables and HAP support. Shaded parts indicate the en-
tries that must be marked read-only.

6.3 Implementation on Other Virtualization Plat-
forms
The implementation details for para- and fully-
virtualized guests presented here are specific to Xen,
but in principle applicable to any virtualization platform
that keeps some form of control over the VMs’ memory
and is involved in I/O multiplexing from the virtual
to the physical devices. All forms of traditional para-
and full virtualization fall under this category. KVM, for
example, uses QEMU for I/O device emulation, hence
I/O can be intercepted in the QEMU backend. The
newer PVHVM technique and hardware-virtualization
are also be supported. In the latter case with no guest
OS support the respective device drivers in the guest
operating systems must be adapted to inform the VMM
about I/O operations.

7 INCREMENTAL CHECKPOINTING
With incremental checkpointing, only the changes since
the previous checkpoint are recorded. Several studies
on VM live migration [33], [34] employ incremental
checkpointing for their purposes. When migrating a
VM from one machine to another, the memory contents
are copied to the target machine iteratively. In the first
iteration, the entire memory contents are transferred. In
each successive iteration, only the pages that have been
modified while the previous iteration was running are
transferred until a threshold is reached.

The Xen VMM uses shadow page tables (SPT, see
Section 6) and a dirty map to track pages that have been
changed. In a first step, the dirty map is cleared and SPT
mode is enabled. Write operations cause the dirty bit in
the SPT to be set from where it is propagated to the dirty
map by a periodically running scan. In the proposed
method, we leverage this feature to implement incre-
mental checkpointing of memory. At every checkpoint,
we collect the dirty pages by inspecting the dirty map
and clear the dirty bits in the SPTs. Then, SPT mode is
enabled to track modifications to memory pages ending
with the next checkpoint. In order to restore a guest to

0

 0 1 2 3

dirty page
at incremental
checkpoint 0

0
0
0
0

0
0
0
1
1
1

2
2
0
1
1

2
3
0
1
3
1

Time

1

Fig. 4. Incremental checkpointing

TABLE 3
Benchmark Scenarios

Benchmark Description
Postmark file system benchmark (file size 4KB 4MB;

1500 files; 10000 transactions)
Make compilation of the Linux kernel tree

(make bzImage; make modules; make
modules install)

Copy copying a large file
Gzip compressing an Apache access log file
Download downloading a disk image from a server
Movie playing a movie
Software Installation installation of LibreOffice, Mozilla Thunder-

bird, and OS-specific security updates
Desktop - Internet browsing several webpages and watching

videos on Youtube using Mozilla Firefox
Desktop - Office reading, editing, and saving files using Libre-

Office
Idle idle system
Bootup checkpoint taken immediately after booting

up

one of the incremental checkpoints, it is necessary to
maintain a history of which pages have been recorded
in which checkpoint file. Figure 4 shows the history for
three incremental checkpoints.

Our proposed method of minimizing duplication be-
tween the memory checkpoint and the guest’s virtual
disk can be combined with incremental checkpointing.
At each checkpoint, pages that have already been flushed
to disk or added to the free page list are removed from
the set of pages that have been modified compared to
the previous checkpoint and do not need to be saved.
The combined method outperforms incremental check-
pointing in all situations (see Section 9).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

TABLE 4
Base results of checkpointing

Space[MB] Checkpoint time[sec] Restoration time[sec]
1GB 1022 9.00 6.96
2GB 2048 14.30 13.84
4GB 4100 26.73 27.01

8 EXPERIMENTAL SETUP

We have conducted an extensive series of experiments
with several benchmark applications representing vari-
ous usage patterns. The following measures are of in-
terest: (1) compared to the current Xen implementation,
how does the proposed method perform in terms of
disk space and runtime? (2) compared to incremental
checkpointing of the entire guest memory, how does the
proposed method without and with incremental check-
pointing perform in terms of disk space and runtime?
(3) what is the effect on checkpoint restoration time?
and finally (4) how does the proposed technique perform
with incremental checkpoints?

We have implemented the proposed technique for PV,
PVHVM, and HVM environments for the Xen VMM and
support all versions from 4.1.2 to the newest 4.5. The
experiments have been conducted on a host machine
with an Intel Core i7x8 with 16 GB of RAM. The guest
operating systems was executed in a domU environment
with four virtual CPUs and 4 GB of RAM. The Linux
guests run the 64-bit Ubuntu 12.04 Desktop version (PV,
PVHVM run the GNU/Linux kernel version 3.9.4). For
the HVM Windows experiments Microsoft Windows 7
(64-bit) was used.

Lacking a standard benchmark suite for checkpoint-
ing virtualized environments, we have chosen several
general benchmark scenarios that are similar to what
has been used in related work [6], [26], [27]. Table 3
lists the benchmarks. Postmark runs the PostMark
benchmark and represents an I/O intensive workload.
Make compiles the current Linux kernel tree by exe-
cuting the commands make bzImage; make modules; make
modules install; this represents both an I/O- and CPU-
intensive workload. Copy copies a large files and Gzip
compresses the same file; Copy is I/O-intensive while
Gzip is more CPU-intensive. Download downloads
a file from a remote server. The Movie, Software
Installation, and the two Desktop benchmarks rep-
resent user sessions with several applications running at
the same time. Movie uses the system video player to
play a movie. In Software Installation, LibreOf-
fice, Mozilla Thunderbird, and OS-dependent security
updates are installed. For Desktop - Internet, we
run two Firefox web browsers with three open tabs
each browsing and streaming videos from YouTube. In
Desktop - Office, LibreWriter is used to open, edit,
and save a number of documents. Idle and Bootup,
finally, represent an idle desktop and a system that
has just been booted up. All checkpoints were taken
while the benchmark in the guest was running (when
applicable).

The results for each benchmark and each virtual ma-
chine were obtained by taking the average of three
independent runs.

9 RESULTS
9.1 Single Checkpoints
The results of taking a checkpoint for PV, PVHVM, HVM
- Linux, and HVM - Windows guests are shown in
Figures 5, 6, 7, and 8.

Memory Contents. Subfigure (a) shows a breakup of
the VM’s memory into the three categories page$, free,
and other. Page$ represents the amount of pages in the
page to block map of the VMM. Free represents pages
that are reported to be free at the time of the checkpoint.
Information about free pages is only available in PV and
PVHVM guests (Figures 5 (a) and 6 (a), respectively).
Other represents memory pages whose contents are un-
known, that is, the page is neither on in the page to block
map nor on the kernel’s free list. These pages hold the
actual volatile data of the benchmarks such as stack and
heap pages. For HVM guests (Figures 7 (a) and 8 (a)) free
pages cannot be detected and are included in other.

The breakup of the memory contents shows that
I/O-intensive benchmarks such as postmark, copy,
gzip, and download exhibit a very high amount of
duplication between the VM’s memory and the disk
independent of the virtualization technology. Windows
seems to be a bit less aggressive at using the available
memory as a page cache than Linux (Figure 7 (a) vs.
Figure 8 (a)). Interactive benchmarks such as software
installation, desktop - internet, desktop -
office, and idle show a rather low occupancy of the
page cache, but instead a large amount of free memory.
Since our technique cannot eliminate free pages from
HVM guests, a combination of the proposed approach
with ballooning [4] will yield better results.

Checkpoint Image Size. Subfigure (b) in Figures 5 to 8
compares the size of the checkpoint image to the original
(unmodified) Xen VMM. Since the proposed technique
is able to eliminate all but the memory pages labeled
other in the corresponding subfigures (a), the amount
of other pages correlates directly to the size of the
checkpoint image. For PV and PVHVM guests, the re-
duction in the size of the checkpoint image is significant:
for PV guests, the average size of the checkpoint image
is only 660 MB or 16% of the 4100 MB obtained from
the unmodified Xen VMM. The size of the checkpoint
images for PVHVM guests is slightly larger than that
of PV guests. This difference is caused because the I/O
performance of PVHVM guests is significantly better
than that of PV guests. Since we checkpoint the guests
after a fixed amount of time, the PVHVM guest will have
progressed further in the benchmark than the PV guest
which typically leads to less free pages in the guest’s
memory.

For fully-virtualized guests the proposed technique is
not able to eliminate free pages from the checkpoint
image. Free pages are classified as other which con-
sequently leads to bigger checkpoint images. The worst

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

0%

25%

50%

75%

100%

P
ag

e
P

ro
p

or
ti

on
 (

%
)

page$ free other

(a) Memory Occupancy

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
h

ec
kp

oi
n

t
S

iz
e

(b) Checkpoint Image Size

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
h

ec
kp

oi
n

t
T

im
e

prepare disk I/O

(c) Checkpoint Time

Fig. 5. Results for PV guests running Linux.

0%

25%

50%

75%

100%

P
ag

e
P

ro
p

or
ti

on
 (

%
)

page$ free other

(a) Memory Occupancy

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
h

ec
kp

oi
n

t
S

iz
e

(b) Checkpoint Image Size

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
h

ec
kp

oi
n

t
T

im
e

prepare disk I/O

(c) Checkpoint Time

Fig. 6. Results for PVHVM guests running Linux.

0%

25%

50%

75%

100%

P
ag

e
P

ro
p

or
ti

on
 (

%
)

page$ free other

(a) Memory Occupancy

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
h

ec
kp

oi
n

t
S

iz
e

(b) Checkpoint Image Size

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
h

ec
kp

oi
n

t
T

im
e

prepare disk I/O

(c) Checkpoint Time

Fig. 7. Results for HVM guests running Linux.

0%

25%

50%

75%

100%

P
ag

e
P

ro
p

or
ti

on
 (

%
)

page$ free other

(a) Memory Occupancy

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
h

ec
kp

oi
n

t
S

iz
e

(b) Checkpoint Image Size

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
h

ec
kp

oi
n

t
T

im
e

prepare disk I/O

(c) Checkpoint Time

Fig. 8. Results for HVM guests running Windows.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

case is demonstrated by the bootup scenario: even
though most of the memory is free, the lack of knowing
so prevents our technique from excluding the pages
from the snapshot (as mentioned in Section 2, combining
ballooning [4] with our technique solves this problem).
Nevertheless, the average size of the checkpoint images
is reduced to 47% and 53% for HVM Linux and Windows
guests, respectively. Table 5 lists the detailed results for
each benchmark and virtualization technology.

Checkpoint Time. Figures 5 to 8 (c) show the break-
down of the checkpointing time into prepare and disk
I/O. The former represents the time required to prepare
the VM for the checkpoint. In original Xen, this phase
merely consists of disconnecting devices whereas in the
PV and PVHVM implementation of the proposed tech-
nique information about dirty pages in the page cache
and free pages needs to be compiled and delivered to the
VMM. This preparation time takes up to 35-times longer
in comparison to original Xen; however, even so the
preparation time only takes about 10% of the total time
required to save a checkpoint to disk (PVHVM - gzip
exhibits the longest preparation time of all benchmarks:
0.7 seconds of the total 7 seconds). Compared to original
Xen with a checkpoint time of 25 seconds this overhead
is not significant. Table 6 shows the detailed results for
each benchmark and virtualization technology.

The required time to generate a checkpoint is domi-
nated by the amount of data which needs to be written
to disk. Comparing the checkpoint time with the size
of the checkpoint images in subfigures (b) and (c) very
clearly illustrates this correlation.

Restoration time. Figure 9 compares the restoration
time of unmodified Xen to the naı̈ve restoration (denoted
p2b order) and the optimized restoration (denoted
sorted) implementation as elaborated in Section 4.3.
The excessive overhead caused by the frequent repo-
sitionings of the rotating disk’s read head is reflected
by the significantly longer restoration times - restart-
ing the HVM Linux VM running make from a space-
optimized checkpoint, for example, suffers from a 20-
fold slowdown compared to original Xen. In absolute
numbers, the restoration of the VM takes 600 seconds
while original Xen only takes about 28 seconds. The
optimized implementation outperforms original Xen in
the case of PV and PVHVM guests by 18% and 2%, on
average. This result is possible because free pages are not
part of the checkpoint. For HVM guests, the optimized
implementation still suffers from a slight slowdown
compared to original Xen: the HVM Linux guests require
15% or 7 seconds more than original Xen, for HVM
Windows guests the slowdown is more severe with 30%
or 13 seconds compared to original Xen. Detailed results
for each benchmark are listed in Table 7.

Sorting Overhead. To optimize the restoration time
when loading the snapshot image from rotating disks,
the I/O requests to disk are first sorted in ascending
order of physical disk blocks. The sorting is done in the
VMM when the restore operation is initiated. The time
overhead of sorting the page to block map is around

200ms on our test machine for a VM with 4 GB of
memory. Compared to the average restoration time of
20 to 40 seconds, this overhead is negligible.

9.2 Incremental Checkpointing
Exploiting free pages and unmodified pages in the page
cache allow us to save a significant amount of space and
time. In a scenario where incremental checkpoints are
necessary, the proposed method can be used to further
increase the efficiency of incremental checkpointing. To
understand the effects of incremental checkpointing, we
have run four benchmark in a VM with 1 GB of RAM
while taking periodic checkpoints. For each of the bench-
marks, ten checkpoints were taken over the course of
the entire benchmark. The checkpointing interval differs
for each benchmark as their execution times differ as
well: for Make, the checkpointing interval was set to 360
seconds, for Postmark to 25, for Software update to 10, and
for Gzip to 5 seconds.

Figure 10 shows the results of periodic checkpointing.
For each benchmark, the upper-hand graph shows the
breakdown of the memory contents at each checkpoint.
Here, free represents the amount of free memory. Page
cache shows the amount of unmodified pages in the page
cache. Unchanged stands for the amount of unmodified
pages. None of these three classes of pages need to be
saved to disk. Changed, finally, shows the amount of
pages that have been modified since the last checkpoint
and therefore need to be included in the incremental
checkpoint image. To show the correlation between the
page cache and the free pages more precisely, changed
includes dirty pages from the page cache, heap, and
stack, whereas unchanged only contains pages from the
heap and the stack. Unmodified pages from the page
cache are shown in page cache. The lower-hand graph
shows the total amount of memory saved at each check-
point for unmodified, the unmodified Xen checkpointing
method, page cache + Free, the proposed method without
incremental checkpointing, inc, incremental checkpoint-
ing implemented on top of unmodified, and, finally, inc +
page cache + free representing the proposed method with
incremental checkpointing.

For the benchmarks Make, Postmark, and Gzip, the pro-
posed method without incremental checkpointing (page
cache + free) outperforms incremental checkpointing (inc),
whereas for Desktop, simple incremental checkpointing
inc performs better than page cache + free. This shows
the inherent weakness of incremental checkpointing in
write-intensive situations. In addition good performance
can be achieved by not saving pages from the page cache
that are consistent with the data on disk. Another obser-
vation that can be made from the graphs in Figure 10 is
that the proposed method performs well and does not
fluctuate regardless of the checkpointing interval or the
I/O intensity of the application. Applying the proposed
technique to incremental checkpointing further improves
its effectiveness. The results show that inc + page cache
+ free outperforms all other methods independent of the
I/O activity or the checkpointing interval.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

TABLE 5
Checkpoint images sizes compared to unmodified Xen.

PV - Linux PVHVM - Linux HVM - Linux HVM - WindowsBenchmark
Size[MB] Size[%] Size[MB] Size[%] Size[MB] Size[%] Size[MB] Size[%]

Postmark 880 21 826 21 1088 27 1827 45
Make 1805 44 1899 49 2894 71 - -
Copy 551 13 605 16 1082 26 1859 45
Gzip 437 11 535 14 916 22 1694 41
Download 439 11 465 12 643 16 1391 34
Movie Player 303 7 385 10 504 12 1128 28
Software Installation 549 13 1047 27 2070 50 1993 49
Desktop - Internet 897 22 2475 64 2407 59 2961 72
Desktop - Office 870 21 2025 53 2306 56 2678 65
Idle 260 6 396 10 3149 77 2250 55
Bootup 268 7 348 9 4037 98 3996 97
Average 660 16 1000 26 1918 47 2178 53

TABLE 6
Checkpoint times compared to unmodified Xen.

PV - Linux PVHVM - Linux HVM - Linux HVM - WindowsBenchmark
Time[sec] Speedup Time[sec] Speedup Time[sec] Speedup Time[sec] Speedup

Postmark 8.6 3.1 8.6 2.9 10.9 2.7 16.3 1.7
Make 14.2 1.8 14.5 1.7 19.3 1.3 - -
Copy 6.4 4.1 7.1 3.5 10.6 2.6 18.1 1.7
Gzip 5.6 4.8 6.9 3.5 9.4 3.0 14.2 2.0
Download 5.6 4.8 6.2 3.9 7.4 3.8 12.9 2.2
Movie Player 4.6 5.7 5.4 4.7 6.4 4.3 10.9 2.6
Software Installation 6.2 4.4 10.0 2.5 14.4 1.8 15.0 1.8
Desktop - Internet 9.4 3.1 19.0 1.4 16.7 1.7 20.8 1.3
Desktop - Office 10.4 2.9 16.3 1.6 17.2 1.6 19.2 1.4
Idle 5.2 4.9 5.5 4.4 20.7 1.2 17.0 1.6
Bootup 4.3 6.5 5.1 4.9 25.7 1.0 27.4 1.0
Average 7.3 4.2 9.5 3.2 14.4 2.3 17.2 1.7

4.28 5.88 8.04 6.16 3.04 3.07

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 R
es

to
ra

ti
on

 T
im

e

original Xen p2b order sorted

(a) PV Linux

4.05 5.38 7.42 5.62

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 R
es

to
ra

ti
on

 T
im

e

original Xen p2b order sorted

(b) PVHVM Linux

20.23 3.71 3.62 3.13 3.97 4.20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 R
es

to
ra

ti
on

 T
im

e

original Xen p2b order sorted

(c) HVM Linux

Fig. 9. Restoration of VMs from space-optimized checkpoints.

TABLE 7
Restoration times compared to unmodified Xen.

PV - Linux PVHVM - Linux HVM - Linux HVM - WindowsBenchmark
Time[sec] Speedup Time[sec] Speedup Time[sec] Speedup Time[sec] Speedup

Postmark 26.7 1.0 25.4 1.0 34.1 0.8 39.9 0.7
Make 34.4 0.8 32.3 0.8 33.8 0.8 - -
Copy 26.7 1.0 25.3 1.0 32.0 0.9 33.8 0.8
Gzip 27.0 1.0 25.6 1.0 32.1 0.9 42.3 0.7
Download 32.9 0.8 32.4 0.8 31.8 0.9 35.2 0.8
Movie Player 25.1 1.1 26.2 1.0 33.1 0.8 34.1 0.8
Software Installation 18.2 1.5 25.6 1.0 32.6 0.9 45.3 0.6
Desktop - Internet 20.0 1.4 28.6 0.9 33.2 0.9 43.6 0.6
Desktop - Office 16.2 1.7 27.8 0.9 33.6 0.8 48.6 0.6
Idle 15.8 1.8 20.4 1.3 31.4 0.9 46.4 0.6
Bootup 7.6 3.5 8.1 3.2 30.7 0.9 30.6 0.9
Average 22.8 1.2 25.2 1.0 32.6 0.9 40.0 0.7

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Free Page cache Unchanged Changed

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10
0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10
0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 6 7 8 9 10

(MB)

(Round)

Unmodified
Page cache+Free
Inc
Inc+Page cache + Free

(a) Postmark

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 6 7 8 9 10

(MB)

(b) Software Update

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 6 7 8 9 10

(MB)

(c) Gzip

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 6 7 8 9 10

(MB)

(d) Make

Fig. 10. Variations of space overhead and memory usages

TABLE 8
Periodic checkpointing compared to unmodified Xen.

Incremental +Unmodified Page cache + Free Incremental
Page cache + Free

Benchmark Time[sec] Space[MB] Time[sec] Space[MB] Time[sec] Space[MB] Time[sec] Space[MB]
Postmark 38.6 1025.0 12.5 269.8 17.6 460.8 8.4 151.4
Software update 38.6 1025.0 9.8 200.1 5.3 103.4 6.3 70.7
Gzip 38.6 1025.0 8.5 156.3 8.1 183.2 5.2 24.3
Make 38.6 1025.0 8.7 166.2 7.9 191.3 5.9 64.6
Average 38.6 1025.0 9.9 198.1 9.7 234.7 6.5 77.6

10 CONCLUSION AND FUTURE WORK

In this work, we have presented a technique for fast
and space-efficient checkpointing of virtual machines for
virtual desktop cloud environments.

The technique is based on the observation that modern
operating systems use the better part of the available
memory to cache data recently read from or written to
external storage. Through transparent I/O interception
at the VMM level, the technique tracks I/O requests
and maintains an up-to-date mapping of memory pages
to disk blocks in the page to block map. At checkpoint
time, pages known to contain data duplicated on disk
are excluded from the checkpoint image, thereby saving
a considerable amount of disk space and time. Several
operations in OSes, such as removing pages from the
page cache or writing to pages without flushing them to
disk, are invisible to the VMM and would invalidate the
page to block map. Pages known to hold duplicated data
are mapped read-only by the VMM in order to detect in-
memory updates.

We have implemented the proposed technique into
the Xen VMM, for PV, PVHVM, and HVM guests. In
comparison with an unmodified Xen hypervisor, exper-
iments with Linux and Windows guests, on average,
achieve a 86%, 76%, 53%, and 47% reduction in the
stored data and a 73%, 62%, 47%, and 38% shorter
time required to take a checkpoint for PV, PVHVM,

HVM Linux, and HVM Windows guests, respectively.
Restoration of guests is up to 1.2 times faster for PV and
PVHVM guests; for fully-virtualized guests we observe
an average slowdown of about 20% compared to un-
modified Xen. In addition, combining the technique with
incremental checkpointing was shown to further reduce
the size of Xen’s incremental checkpoints by factor of
three.

Overall, the proposed techniques shows a broad ap-
plicability and good performance for a wide variety
of benchmarks and virtualization techniques. The tech-
nique is not limited to the Xen VMM and independent of
most other optimizations and can be combined in order
to obtain even better results.

ACKNOWLEDGMENTS

This work was supported in part by the National
Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT & Future Planning (No.
2012R1A1A1042938 and 2013R1A3A2003664). ICT at
Seoul National University provided research facilities for
this study. A preliminary version of this paper appeared
in the proceedings of the 7th ACM SIGPLAN/SIGOPS
international conference on Virtual execution environ-
ments (VEE ’11) [26].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,

A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A berkeley view of
cloud computing,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb 2009. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.html

[2] W. Zhao and Z. Wang, “Dynamic memory balancing for vir-
tual machines,” in VEE ’09: Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments. New York, NY, USA: ACM, 2009, pp. 21–30.

[3] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat, “Difference engine: Harnessing
memory redundancy in virtual machines,” in OSDI ’08: Pro-
ceedings of the 8th symposium on Operating systems design and
implementation, 2008.

[4] C. A. Waldspurger, “Memory resource management in vmware
esx server,” in OSDI ’02: Proceedings of the 5th symposium on
Operating systems design and implementation. New York, NY, USA:
ACM, 2002, pp. 181–194.

[5] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault
tolerance,” ACM Trans. Comput. Syst., vol. 14, no. 1, pp. 80–107,
1996.

[6] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield, “Remus: high availability via asynchronous
virtual machine replication,” in NSDI’08: Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementa-
tion. Berkeley, CA, USA: USENIX Association, 2008, pp. 161–174.

[7] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren,
G. M. Voelker, and S. Savage, “Scalability, fidelity, and contain-
ment in the potemkin virtual honeyfarm,” in SOSP ’05: Proceedings
of the twentieth ACM symposium on Operating systems principles.
New York, NY, USA: ACM, 2005, pp. 148–162.

[8] C. Jo, E. Gustafsson, J. Son, and B. Egger, “Efficient live
migration of virtual machines using shared storage,” in
Proceedings of the 9th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, ser. VEE ’13. New
York, NY, USA: ACM, 2013, pp. 41–50. [Online]. Available:
http://doi.acm.org/10.1145/2451512.2451524

[9] “VirtualBox,” http://www.virtualbox.org.
[10] D. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd Edition.

Oreilly & Associates, 2005.
[11] “Xen 4.5.0,” http://www.xenproject.org/downloads/

xen-archives/xen-45-series/xen-450.html.
[12] I. Habib, “Virtualization with kvm,” Linux J., vol. 2008, February

2008. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1344209.1344217

[13] “VMware Workstation,” http://www.vmware.com/products/
workstation.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles. New York, NY, USA:
ACM, 2003, pp. 164–177.

[15] “Transcendent Memory Project,” http://oss.oracle.com/projects/
tmem.

[16] D. Magenheimer, C. Mason, D. McCracken, and K. Hackel,
“Transcendent memory and linux,” in Proceedings of the Linux
Symposium, Montreal, Quebec Canada, 2009, pp. 191–200.

[17] M. Schwidefsky, H. Franke, R. Mansell, H. Raj, D. Osisek, and
J. Choi, “Collaborative memory management in hosted linux
environments,” in Proceedings of the Linux Symposium, Ottawa,
Ontario, Canada, 2006, pp. 313–328.

[18] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, “Disco: run-
ning commodity operating systems on scalable multiprocessors,”
ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 412–447, 1997.

[19] G. Milos, D. G. Murray, S. Hand, and M. A. Fetterman, “Satori:
Enlightened page sharing,” in ATC’09: 2009 USENIX Annual
Technical Conference on Proceedings of the USENIX Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, 2009.

[20] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-
box and gray-box strategies for virtual machine migration,” in
NSDI’07: Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation. Berkeley, CA, USA: USENIX
Association, 2007.

[21] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Geiger: monitoring the buffer cache in a virtual machine en-
vironment,” in ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming languages and
operating systems. New York, NY, USA: ACM, 2006, pp. 14–24.

[22] P. Lu and K. Shen, “Virtual machine memory access tracing with
hypervisor exclusive cache,” in ATC’07: 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX Annual Technical

Conference. Berkeley, CA, USA: USENIX Association, 2007, pp.
1–15.

[23] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar, “Dynamic tracking of page miss ratio curve for memory
management,” in ASPLOS-XI: Proceedings of the 11th international
conference on Architectural support for programming languages and
operating systems. New York, NY, USA: ACM, 2004, pp. 177–188.

[24] I. Zhang, A. Garthwaite, Y. Baskakov, and K. C. Barr, “Fast restore
of checkpointed memory using working set estimation,” in ACM
SIGPLAN Notices, vol. 46, no. 7. ACM, 2011, pp. 87–98.

[25] B. Egger, E. Gustafsson, C. Jo, and J. Son, “Efficiently restoring
virtual machines,” in NPC’13: Proceedings of the 10th IFIP inter-
national conference on Network and parallel computing. Springer,
2013.

[26] E. Park, B. Egger, and J. Lee, “Fast and space-efficient virtual
machine checkpointing,” in VEE’11: Proceedings of the 7th ACM
SIGPLAN/SIGOPS international conference on Virtual execution
environments. New York, NY, USA: ACM, 2011, pp. 75–86.
[Online]. Available: http://doi.acm.org/10.1145/1952682.1952694

[27] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging operat-
ing systems with time-traveling virtual machines,” in ATEC ’05:
Proceedings of the annual conference on USENIX Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, 2005, pp.
1–1.

[28] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“Revirt: enabling intrusion analysis through virtual-machine log-
ging and replay,” in OSDI ’02: Proceedings of the 5th symposium on
Operating systems design and implementation. New York, NY, USA:
ACM, 2002, pp. 211–224.

[29] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin,
S. M. Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan,
“Snowflock: rapid virtual machine cloning for cloud computing,”
in EuroSys ’09: Proceedings of the 4th ACM European conference on
Computer systems. New York, NY, USA: ACM, 2009, pp. 1–12.

[30] J. Liu, W. Huang, B. Abali, and D. K. Panda, “High performance
vmm-bypass i/o in virtual machines,” in ATEC ’06: Proceedings of
the annual conference on USENIX ’06 Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 2006, pp. 3–3.

[31] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt, “Bridging
the gap between software and hardware techniques for i/o virtu-
alization,” in ATC’08: USENIX 2008 Annual Technical Conference
on Annual Technical Conference. Berkeley, CA, USA: USENIX
Association, 2008, pp. 29–42.

[32] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating
two-dimensional page walks for virtualized systems,” in Proceed-
ings of the 13th international conference on Architectural support for
programming languages and operating systems, ser. ASPLOS XIII.
New York, NY, USA: ACM, 2008, pp. 26–35.

[33] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,”
in NSDI’05: Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation. Berkeley, CA, USA:
USENIX Association, 2005, pp. 273–286.

[34] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migra-
tion for virtual machines,” in ATEC ’05: Proceedings of the annual
conference on USENIX Annual Technical Conference. Berkeley, CA,
USA: USENIX Association, 2005, pp. 25–25.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2016.2519890

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

