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Abstract. Live migration of virtual machines (VMs) is an important tool for data
center operators to achieve maintenance, power management, and load balancing.
The relatively high cost of live migration makes it difficult to employ live migra-
tion for rapid load balancing or power management operations, leaving much of
its promised benefits unused. The advance of fast network interconnects has led
to the development of distributed shared memory (DSM) that allows a cluster
of nodes to utilize remote memory with relatively low overhead. In this paper,
we explore VM live migration over DSM. We present and evaluate a novel live
migration algorithm on our own DSM implementation. The evaluation of live
migrating various VMs executing real-life workloads shows that live migration
over DSM can reduce the total migration time by 70% and the total amount of
transferred data by 65% on average. The absolute average total migration time of
only 1.1 seconds demonstrates the potential of live migration over DSM to lead
to better load balancing, energy management, and total cost of ownership.

Keywords: Virtualization · Distributed Shared Memory · Live Virtual Machine
Migration · Cloud Computing.

1 Introduction
The growing size of datasets in modern memory-intensive workloads presents unique
challenges to cloud computing infrastructure and the underlying system software. To
process such workloads, Amazon EC2, for example, offers instances with up to 24
TiB of RAM [2]. In this context, two challenges are of particular interest: (1) the total
memory footprint of such workloads does not fit into the physical memory of a single
machine, and (2) the working set size fluctuates strongly over time. While the first
challenge could be addressed by paging to secondary storage, such a system would
need to encompass both a large physical memory and abundant fast secondary storage
- both measures that render it difficult to efficiently utilize memory resources and that
increase the total cost of ownership (TCO) of a data center.

Distributed shared memory (DSM) has long been proposed as a remedy to solve
the problem of limited local memory. DSM provides a unified address space across
a cluster of physical machines that can be accessed by any machine, whether the ac-
cessed memory is local or remote. This allows to allocate more memory for running
workloads than is physically available on the host it is running on. DSM also enables
elastic use of memory across physical node boundaries which helps to raise the overall
memory utilization and lower the TCO of a cluster. Despite the many advantages of
deploying DSM in data centers, however, DSM has been deemed impractical in pro-
duction environments due to its significantly longer latency to access remote memory.
The recent advances in fast network interconnects are rapidly closing the gap between



2 Changyeon Jo, Hyunik Kim, and Bernhard Egger�

VMVM VMVM

 (a) VM migration without DSM

Source

full memory copy required

Destination

VMVM VMVM

 (b) VM migration on DSM

Source

DSM

Destination

Fig. 1. DSM Live Migration

local and remote memory accesses. For example, an off-the-shelf commodity Mellanox
ConnectX-6 network interface card (NIC) achieves sub-microsecond access latencies
and 100 Gbit/s bandwidth over remote direct memory access (RDMA). This modern
high-performance networking hardware revives the idea of DSM in the era of cloud
computing, and recent research shows that DSM can provide on-par performance com-
pared to running applications entirely in local memory [8, 9, 13, 15, 17, 20].

In addition to DSM achieving higher utilization of memory resources, it also enables
novel optimizations for virtualized environments. Live migration of a virtual machine,
i.e., the act of moving the execution context along with all volatile data of a VM from
one physical host to another while the VM is running, not only enables data center
operators to perform maintenance on physical machines, but also to balance the load
between physical hosts [19]. If a physical machine is running low on resources, some
VMs are live-migrated away to avoid a resource overload and provide a better service.
On the other hand, consolidation of VMs from lightly-loaded hosts on fewer nodes can
help lower the energy consumption and TCO of a data center.

This paper focuses on live migration of VMs in a DSM environment. While tradi-
tional approaches copy the entire volatile state of a VM - including its main memory and
paged out data on secondary storage - from the source to the destination host, the novel
approach presented in this work employs the local memory as a cache for DSM. When
migrating a VM, only the local cache of the VM’s volatile data needs to be migrated
since all other memory is directly accessible through the DSM.

We first present the design and implementation of DSM that is tailored to virtual
environments. The DSM uses RDMA to reduce remote memory access latency and
runs VMs without a significant performance degradation even under a highly memory-
constrained environment. We then discuss a novel VM migration algorithm employing
DSM to reduce the total migration time by sending only the contents of the local mem-
ory to the destination. An evaluation of VMs running modern memory-intensive appli-
cations demonstrates that, on average, the presented approach is able to reduce the total
migration time by 70 percent and can migrate large-memory VMs almost instantly.

The contributions of this paper are as follows:
(1) A high-performance DSM for virtualized environments that runs applications with-

out a noticeable performance degradation on DSM.
(2) A novel DSM-based VM live migration algorithm that does not require an entire

memory copy.
(3) An implementation and evaluation of the techniques in QEMU/KVM.
(4) Results that show almost instant live migration of VMs running various realistic

workloads.
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2 Background of VM Live Migration and DSM

This section briefly introduces VM live migration and distributed shared memory.

2.1 VM Live Migration

Live migration is a technique that moves a running VM from one physical host to an-
other without stopping the execution of the VM. The main action of live migration
consists of copying the entire volatile state of the VM, including its memory, from the
source machine to the destination host. The memory of a VM can be copied before or
after moving the execution state (VCPU register values, device driver states) to the des-
tination host. The VM is only briefly stopped during the transfer of the execution state.
Figure 2 shows the different phases of live migration.

Prepare: In this phase, the source starts to copy the volatile state of the VM (mostly
the data in the memory) from the source to the destination host. Since the VM keeps
running on the source, it may alter memory that has already been transferred to the
host, therefore pre-copy-based live migration algorithms iteratively copy the modified
state to the destination host. Pre-copy enters the Stop phase when the amount of dirtied
memory falls below a certain threshold. The VM experiences a minimal performance
degradation during the Prepare phase caused by the tracking of dirtied memory pages.

Stop: In this phase, the VM is stopped on the source, and the states of the VM on the
source and the destination host are synchronized. When the synchronization completes,
the VM is resumed on the destination host. The length of the Stop phase depends on the
amount of data to be synchronized, and the minimization of this phase is typically an
important optimization goal of live migration algorithms.

Resume: This phase only exists in live migration algorithms that do not transfer
the entire state in the Prepare and Stop phase. During the Resume phase, the destina-
tion host fetches the remaining volatile state from the source host in the background.
Data accessed by the VM that still resides on the source is reactively fetched from the
source which typically leads to a heavy performance degradation of the VM. Post-copy-
based live migration operate in this manner. The advantage of this technique is that it
effectively reduces the total amount of data to be transferred by skipping the iterative
pre-copy phase; however, accesses to data still residing on the source can severely de-
grade the performance of the VM.
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2.2 Performance Metrics of VM Live Migration

To accommodate large in-memory workloads, cloud service providers have begun to of-
fer VMs with tens to thousands GiBs of memory [2,6,7]. Despite the increased network
bandwidth, migrating such large amounts of data not only takes a long time but also
consumes a large amount of network bandwidth; optimization of several performance
metrics is thus of importance. The major performance metrics of VM live migration
are:
• The total migration time denotes the time from start to end of the migration.
• The downtime represents the duration of the stop phase, i.e., period during which

the VM is unavailable to the user.
• The total transferred data measures the total amount of data transferred from source

to destination.
• Performance degradation is a measure representing the performance degradation

experienced by the VM during live migration such as reduced throughput or in-
creased service latency.

2.3 Distributed Shared Memory

Distributed shared memory (DSM) provides a global shared address space for all ma-
chines in the same cluster. DSM provides an easy-to-use communication mechanism
for distributed applications. It also enables the execution of applications with a large
working set that does not fit into the memory of a single machine.

DSM can be implemented using hardware-based or software-based approaches. In
this paper, we focus on software-based DSM. A common practice of software-based
approaches is to implement DSM using virtual memory. The virtual-to-physical ad-
dress translation process enables interception of accesses to locations outside the local
memory of a machine and redirection to the DSM. The overhead of remote accesses is
minimized by designating a portion of the local memory as a cache for DSM.

The main obstacles of deploying DSM are the comparatively slow remote memory
accesses and the high cost of maintaining a coherent view of DSM in the presence
of local caches. To overcome the first obstacle, we employ RDMA (Remote Direct
Memory Access) to minimize the software overhead of a remote memory access. The
second obstacle is avoided by the observation that VMs do not share memory and thus
no explicit coherence management is necessary.

2.4 Why DSM for Virtual Machines?

The major cloud service providers now provide large memory VM instances with up to
24 TiB of memory [1, 6, 7]. DSM is an efficient way to implement such large memory
instances. DSM allows the machines of a cluster to share memory and thus helps in-
creasing the overall memory utilization of the cluster. In addition, modern data-intensive
workloads exhibit dynamically changing working set sizes, which implies that a rela-
tively small local memory on the server is sufficient to run the application without a
significant performance degradation. The live migration cost of large-memory VMs
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provides another motivation for deploying DSM in virtualized environments. Large-
memory VMs tend to experience significantly higher migration costs and have been
reported as a reason for service disruption in production clusters [3, 19]. DSM can re-
duce the cost of VM migration by significanly reducing the amount of memory to be
copied, which makes deploying DSM further attractive. We expect that cloud service
providers will start deploying DSM in their datacenters in the near future.

3 DSM Design for Virtualized Environments

This section discusses the design choices of our DSM specialized for virtualized envi-
ronments and presents a novel live migration approach aimed at exploiting the benefit
of our DSM implementation.

3.1 Assumptions on DSM

The presented DSM makes the following assumptions:
• The DSM provides a cluster-wide shared memory address space.
• The DSM relies on the virtual-to-physical address translation mechanism of the host

operating system to allow transparent access to remote memory.
• The working set of an application is copied into local memory for direct access and

to hide the remote memory access latency through a transparent caching mechanism.
• The DSM does not provide transparent cache coherence. Coherent memory is sup-

ported but requires explicit API calls before synchronization points. This greatly
simplifies the design of the DSM and achieves far better performance than software-
based transparent cache coherence.

Unlike traditional DSM designs, we assume that only one application (a VM) exclu-
sively accesses its DSM-backed memory address space and data sharing is only enabled
upon request. These properties are sufficient to execute VMs on DSM and allow VMs to
run with little performance degradation. Any DSM implementation that shares the same
characteristics can be easily modified to support the presented live migration algorithm
in this paper.
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3.2 DSM Components

This section briefly introduces the design of the DSM, how to allocate memory to a VM
(or an application), and the discusses the components of the DSM.

User interface. The DSM is implemented as a kernel module and exposed to user space
as a character device. The virtual machine monitor (VMM) or regular applications use
this device to reserve the desired amount of distributed shared memory. The memory is
mapped into the virtual address space of the VM by the VMM. To the VM, the entire
memory space appears as local physical memory, i.e., the VM is not aware that it is
running on top of DSM.

OS service. Our DSM kernel module provides the illusion of a single address space
covering both local and remote memory. It transparently manages an area of local mem-
ory as a cache for recently accessed DSM. Accesses to remote memory cause a page
fault which is handled by the DSM kernel module. The accessed page is fetched from
the remote node and brought into local memory. If the local cache is full, a victim page
is selected and written back to remote memory to make room for the new page. An-
other task of the OS service is to balance memory requests across the cluster. The ser-
vice communicates with the memory nodes and distributes memory allocation requests
nodes with low memory pressure.

Memory nodes. All nodes in the cluster act both as providers and consumers of DSM.
A consumer node may send several requests to different nodes that then reserve the
requested amount in their local memories. A centralized approach with one or separate
pool of memory nodes (called as memory disaggregation and gaining popularity in the
recent days) is also possible and does not change the semantics of the presented DSM
and live migration algorithm as long as all remote memory is accessible from both the
source and destination host.



Instant Virtual Machine Live Migration 7

11 11 11 11

11 22 11 11

Source

Destination

1st iter

2nd iter

: local page

: dirty page

: dirty and local

Distributed Shared Memory

final state

Fig. 5. DSM Live Migration Example

3.3 DSM-Optimized Live Migration Algorithm

In traditional environments, the volatile state of a VM is local to a host and thus needs
to be copied to the destination in its entirety to enable live migration. In a DSM en-
vironment, however, all memory except the data cached in local nodes is visible from
any node in the cluster. This allows us to design a novel live migration approach that
eliminates most of the state transfer in the Prepare phase. Figure 4 shows a timeline of
the events in DSM-optimized live migration. We first explain the necessary steps of the
live migration algorithm on the source node.

Step 1: Preparation. The source node notifies the destination node of the imminent
migration. The destination host performs the necessary initialization such as starting an
empty process for the VM. This step takes only a negligible amount time with respect
to the total migration time.

Step 2: Iterative Pre-copy. The first task of the iterative pre-copy algorithm usually
encompasses sending the entire memory once to the destination. The presented DSM-
optimized algorithm, however, only needs to send the pages that exist in the local cache.
Memory residing in a remote node does not need to be transferred since the data can be
accessed directly from the destination node. Note that in post-copy mode, this step is
executed after the following step 3.

Figure 5 shows an example of iterative pre-copy under DSM. In the first iteration,
the VMM marks all pages as dirty in order to transfer the entire memory to the des-
tination. For a VM using DSM, however, only a subset of all pages exists in the local
memory. The example shows that four pages with index 2 to 5 are cached in local mem-
ory. In the first iteration, all pages are marked dirty. The set of pages to be sent to the
destination is given by the intersection of the dirty and the local pages. During the data
transfer of the first iteration, the VM keeps running and modifies pages 2, 4, and 8. In



8 Changyeon Jo, Hyunik Kim, and Bernhard Egger�

the second iteration, again the intersection of all local pages (pages 4, 5, and 7) and
dirty pages (pages 2, 4, and 8), that is, page 4, is sent to the destination. Pages 2 and
8 were modified but have already been synchronized with their remote copy, so they
do not need to be transferred. In these two iterations, a total of five pages need to be
transferred to the destination with our DSM-optimized algorithm. The original pre-copy
algorithm would have to send 11 pages (8 in the first, 3 in the second iteration) in total.

Step 3: Synchronization. In the synchronization phase, the VM is stopped, so no pages
are dirtied at the source anymore. The dirtied and local pages are sent in a last iteration
along with the VM’s CPU and device state. In this step, the DSM-optimized algorithm
also transfers the DSM metadata to the destination host. The DSM metadata for a VM
contains the location of all remote memory pages and is required on the destination
node to access the remote data of the VM.

Step 4: Cleanup. In this last step, the VM is terminated on the source host.

Destination node. The tasks of the destination are simpler than those on the source
node. Two additional steps are required to correctly complete the DSM-optimized VM
migration. At the beginning of every iteration, the destination receives the status of
DSM-local pages from the source. The destination computes the intersection of DSM-
local pages from the source and DSM-local pages on the destination. Then the desti-
nation purges all DSM-local pages that do not belong to the intersection an can thus
be restored from remote memory. The purged pages are reused to hold new DSM-local
pages sent from the source; this allows us to limit the amount of local memory required
for VM live migration on the destination node. Second, in the stop phase, the desti-
nation receives the DSM metadata from the source node and maps it into the address
space of the VM on the destination host to enable access to its data.

4 Implementation

This section gives some implementation details of the DSM and the modifications to
QEMU/KVM required to support the DSM-optimized live migration algorithm.

4.1 Linux Kernel DSM

Our DSM is implemented in a Linux kernel module. The kernel module maps the DSM
as a character device node into user-space. DSM-backed memory is obtained by in-
voking the mmap system call on that device node. The returned virtual address range
represents a distributed memory region. This virtual address range is not mapped to any
memory initially. Accesses to unmapped addresses trigger a pagefault that is handled
by our DSM module. The module maps the accessed page to local or remote memory.

Resolving a Pagefault. The early pagefaults are resolved by allocating memory from
local memory. We request a 4KB page from the kernel, map the page to the faulted
address, and let the application continue. As the VM continues to access more pages in
its virtual address space, the size of the locally allocated pages will eventually hit the
set limit allowed for caching DSM data. From this point on, the kernel module starts
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to page out pages that have not been accessed recently to remote memory. To do so, it
first finds a node with sufficient free memory to back up the part of the data in the local
memory, then reserves the required amount on that node, and finally copies the victim
page(s) to the remote node. If a pagefault is to a paged-out address, the kernel fetches
the data from the remote node, places it in a local page, updates the page tables, and
then lets the VM continue.

Background processes running on all nodes of the DSM periodically exchange in-
formation about the available free memory. Donor nodes are selected on-demand using
the worst-fit policy. The minimum memory request size is 64MB to reduce the overhead
of DSM metadata. The donor node allocates a contiguous address range in its mem-
ory, and the kernel module maps a part of the VM’s virtual address space to this area.
Victim pages are selected by an approximate-LRU algorithm implementing a CLOCK
policy [4].

Memory Server. Each memory node in the DSM cluster runs a daemon to serve mem-
ory requests from other nodes. Each memory server is connected to all other nodes.
Memory allocation requests are handled using remote procedure calls (RPC). In re-
sponse to an allocation request, the memory server locally allocates memory using
malloc and registers the area for RDMA. After the registration is complete, the memory
server replies to the request by sending the allocated memory’s DSM metadata which
is used by the requesting node for later accesses.

4.2 Userspace DSM Library

To allow the implementation of our DSM-optimized live migration technique in userspace,
a userspace library is available that provides the necessary API. The API implements
the following functionality: (1) set local DSM cache size, (2) read status of local DSM
page, (3) make a DSM region persistent, (4) drop specific pages of a DSM region, and
(5) provide access to DSM metadata. The library is used by the DSM-optimized algo-
rithm presented in Section 3.3.

4.3 DSM Live Migration Implementation in QEMU/KVM

We implement the DSM-optimized VM live migration technique in the most popu-
lar VM hypervisor, QEMU/KVM [5]. QEMU/KVM has been widely adopted in pro-
duction clouds, hence adding the new feature to QEMU/KVM will allow for an easy
adoption of the new approach into existing data centers. The functions enabling live mi-
gration over DSM are implemented in a library so the technique can be easily accessed
by other hypervisors such as VMware and Xen.

Starting a VM on DSM. QEMU/KVM internally allocates a contiguous address range
from anonymous memory using mmap. Modifying QEMU/KVM to use DSM-backed
memory is trivial: the only necessary change is to provide a file descriptor to the DSM
device node instead of a NULL pointer to signal anonymous memory. The DSM kernel
modules transparently handles all accesses to memory of a VM, local or remote, so VM
itself requires no modification and can make use of DSM-backed memory transparently.
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Fig. 6. Application performance on DSM

DSM live migration in QEMU. QEMU/KVM supports many live migration tech-
niques out-of-the-box with a clean API. Adding a new live migration technique re-
quires describing the parameters of the new live migration technique, then QEMU au-
tomatically generates the boilerplate code. The DSM-optimized live migration algo-
rithm is implemented with around 350 lines of code. The code mainly invokes the DSM
userspace API to retrieve a page’s status, to obtain a list of dirtied pages and compute the
pages to be transferred, and to send a few messages from the source to the destination
to synchronize the live migration steps between the source and the destination.

5 Evaluation

This section evaluates the DSM-optimized live migration technique and compares it
with DSM-unaware pre-copy as available in QEMU/KVM.

5.1 Test Environment

The source and destination nodes are equipped with an Intel(R) Xeon(R) Silver 4114
2.20GHz processor (10-core, 20-thread) and 64 GiB of local memory. Each machine
runs Ubuntu 18.04 with Linux kernel version 5.3.7. The machines are connected by a
ConnectX-4 56g Infiniband NIC with a theoretical bandwidth of 56 Gbit/s and a latency
of 0.6µs. The DSM and VM live migration traffic share the same Infiniband connection
and can interfere. The VM network is physically separated and uses a 1 Gbit/s Ethernet
NIC. QEMU/KVM version 4.2 provides the hypervisor, and the VMs run Ubuntu 18.04
as their guest OS. The VMs use network-attached storage to access their disk images.
VM disk I/O traffic is routed through the VM network. All VMs used in the experiments
are equipped with 4-VCPU and 8 GB of local memory. The local memory is limited by
our DSM depending on the evaluated scenario.
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Fig. 7. Total migration time of the DSM approach and the baseline

5.2 Workloads Used in the Evaluation

The presented live migration technique over DSM is evaluated with a wide range of ap-
plications from high-performance parallel processing benchmark suites (Parsec, NPB,
and Spark) and the CIFAR10 Tensorflow inference benchmark. All applications run
with four threads to fully utilize all available cores. The total memory footprint of the
applications is 2.5 GB on average. The average working set size (measured by scanning
the access bit in the page table) over a 60s window is 1.2 GB on average with a standard
deviation of 877 MB. The workloads have dynamically changing working sets and the
memory footprints are large enough to stress the DSM.

5.3 Application Performance on DSM

We first show that DSM is a viable option for a virtualized environment by evaluating
application performance degradation in dependence of the allocated local memory. We
tested application performance in a VM by limiting the DSM local memory size against
the application’s total memory footprint. The baseline is obtained by running the VM
entirely in local memory; sufficient memory is available such that no paging occurs.
Figure 6 shows the application performance of DSM-backed-storage normalized to the
baseline; note the log-scale of the Y axis.

The results in Figure 6 show that all applications run without noticeable perfor-
mance degradation with 80% of local memory. Even in the extreme case of only pro-
viding 30% of the total memory footprint as local memory, more than half of all appli-
cations show a high tolerance with a slowdown of under 2. Note that the tested applica-
tions are all memory-bound, so we expect that less memory-intensive applications such
as smaller databases and web service application will show even better tolerance than
the evaluated applications.
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5.4 Performance of DSM-Optimized Live Migration

Next, we present the results of our DSM-optimized live migration algorithm applied to
VMs running the applications from Section 5.3. The DSM-optimized approach is com-
pared to the pre-copy algorithm implemented in QEMU/KVM. QEMU/KVM supports
optional data compression to reduce the amount of transferred data. However, we found
that data compression is counterproductive since the compression algorithm cannot sat-
urate the fast network links. As a consequence, data compression is not enabled for the
baseline and our DSM-optimized migration technique.

Figure 7 the total migration time of the presented DSM-optimized live migration al-
gorithm compared to QEMU/KVM’s pre-copy algorithm. The y-axis represents the ab-
solute total migration time in seconds, the x-axis five representative applications with at
30%, 50%, 70%, and 100% of the total application memory footprint in local memory.
The Infiniband NIC is used in IPoIB (IP over Infiniband) mode and the TCP protocol
for the data transfer. The result shows that the presented approach clearly outperforms
the baseline. The more memory is remote, the better performs the DSM-optimized live
migration. For example, with 30% local memory, the source needs to send at most 30%
of the total VM’s memory in one iteration. Note that our approach also outperforms
QEMU’s pre-copy with 100% of VM memory kept locally. This seemingly counterin-
tuitive result stems from the way zero pages are handled. Zero pages are pages whose
contents are only 0s; QEMU excludes such pages to reduce the amount of data trans-
ferred. While QEMU has to inspect every page to determine whether it is a zero page
or not, this information is readily available in our DSM, which considerably speeds up
the detection of zero pages and leads to overall better performance. On average, our
approach reduces the total migration time by 70 and the downtime by 8 percent. The
total amount of transferred data is reduced by 65% at a 30% local memory ratio setting.

Overall, these results are very promising and show the potential of DSM-backed
virtualization. Live migration needs to be fast when a node experiences a shortage of
resources. It is reasonable to assume that in this case, the ratio of local memory has
already been reduced at least for some VMs; and migrating such VMs away from the
overloaded outperforms standard live migration by a factor 2-4.

6 Related Work
VM live migration and DSM have more than a decade of history. In this section, we
introduce previous work and highlight our contribution.

VM live migration. Clark [11] first presented the pre-copy approach and showed that a
VM can be migrated seamlessly with its workload After the inception of pre-copy, many
follow-up works have presented optimization techniques to make live migration more
efficient. Hines [14] presented the post-copy approach which trades VM performance
for a reduction in the transferred data and a shorter downtime. Many works have shown
optimization techniques for live migration performance that can be applied to both pre-
copy and post-copy. In difference to this work, most of the published research focuses
on VMs with a small amount of memory of up to 10 GiB. VM workloads have changed
significantly along with hardware improvements, ubiquitous parallel processing, and
much larger working set sizes than a decade ago. We argue that it is the right time
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to think about a fundamentally different approach for VM live migration; such as, for
example, the DSM approach presented in this paper.

Distributed Shared Memory. DSM also has a long history in the computer systems,
and many different designs have been proposed. In this paper, we focus on executing
VMs or unmodified processes on a mix of local and remote memory to improve overall
utilization of memory resources. One early work on this topic is NSwap [16]. As the
name implies, it implements a swap device using remote memory as secondary storage.
It is a special kind of DSM that does not support cache coherence, naming, and data
sharing but provides a simple way of space sharing of the cluster of memory. Many
follow-up works show some promising aspects of using remote memory as an extension
of local memory, however, none of them were realized in a production environment due
to the slow networks and insufficient computation power of that time. Similar ideas have
been revived with the significant advances in networking hardware in recent days [8, 9,
12, 13, 15, 20]. The performance gap between local and remote memory access is now
quite close [10, 18], and we expect this trend to continue with optical networks.

Many recent works on this topic show promising results of running applications on
a mix of local and remote memory; in difference to this work, they focus on native
applications and not virtual machines. Certain types of application have been shown
to perform well even in highly memory-constrained environments; a results that makes
DSM for virtual environments even more promising.

7 Conclusion
This paper has presented a design for distributed shared memory tailored at virtual-
ized environments. A novel DSM-optimized live migration algorithm makes use of the
DSM’s properties to improve several metrics of VM migration. The presented approach
is able to significantly reduce both the total migration time and the downtime of large
memory VMs and enables almost instant VM live migration for moderately-sized VMs.
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